• 제목/요약/키워드: 문서 유형 분류

검색결과 102건 처리시간 0.026초

SVM을 이용한 한글문서 범주화 실험 (Categorization of Korean documents using Support Vector Machines)

  • 최성환;임혜영;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2000년도 제7회 학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2000
  • 자동문서 범주화에 이용되는 학습분류기 중에서 SVM은 자질 차원을 축소하지 않고도 좋은 성능을 보이고 있다. 본 실험에서는 KTSET 텍스트 컬렉션을 대상으로 두 개의 SVM 분류기를 이용하여 자질축소 및 자질표현에 따른 성능비교 실험을 하였다. 자질축소를 위하여 $\chi$$^2$통계량을 자질선정기준으로 사용하였으며, 자질값으로는 단어빈도 및 문헌빈도의 두 요소로 구성되는 다양한 가중치를 사용하였다. 실험결과 SVM은 자질축소에 큰 영향을 받지 않고 가중치 유형에 따라 성능의 차이를 보였다.

  • PDF

문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역 (Integrated Clustering Method based on Syntactic Structure and Word Similarity for Statistical Machine Translation)

  • 김한경;나휘동;이금희;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.44-49
    • /
    • 2009
  • 통계기계번역에서 도메인에 특화된 번역을 시도하여 성능향상을 얻는 방법이 있다. 이를 위하여 문장의 유형이나 장르에 따라 클러스터링을 수행한다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 문장 사이의 문법적 구조 유사성으로 문장을 유형별로 분류하는 새로운 기법을 제시하였고, 단어 유사도 정보로 문서의 장르를 구분하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조의 유사성과 단어 유사도 계산을 위하여 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정은 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

  • PDF

XML 문서에서 순수 구조 질의에 대한 인덱싱 및 질의 처리 (Indexing and Query Processing for Pure Structure Query on XML Documents)

  • 김성완;김연희;이재호;임해철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.220-222
    • /
    • 2002
  • XML 문서의 효율적인 저장 및 검색을 위한 많은 연구들이 수행되고 있다. 그러나 기존의 연구들에서는 주로 내용 검색의 정확도를 높이기 위해 구조적 정보를 이용하는 방법을 제시하고 있으나, 순수하게 구조만을 대상으로 하는 인덱싱 및 질의 처리 방법 특히 , 동적인 환경을 고려한 인덱싱 및 질의 처리 방법에 대해서는 많이 언급하고 있지 않다. 본 논문에서는 XML 문서에 대한 순수 구조 질의 처리가 가능하고, 엘리먼트의 삭제 및 삽입 등 동적인 변경을 처리할 수 있는 인덱스 구조를 설계한다. 또한 설계된 인덱스 구조를 기반으로 순수 질의 처리 유형을 분류하고 각각에 대한 질의 처리 방안을 제시한다.

  • PDF

동시링크를 이용한 웹 문서 클러스터링 실험 (Clustering of Web Document Exploiting with the Co-link in Hypertext)

  • 김영기;이원희;권혁철
    • 한국도서관정보학회지
    • /
    • 제34권2호
    • /
    • pp.233-253
    • /
    • 2003
  • 인간은 지식의 조직을 통해 세계를 이해한다. 정보검색분야에서 연구되고 있는 정보의 조직화에는 분류와 클러스터링이라는 두 가지 유형이 있다. 분류는 미리 정의된 범주에 각 항목을 배정하는 행위인 반면, 클러스터링은 유사하거나 관련된 항목을 집단화함으로써 정보를 조직한다. 인터넷 정보자원의 조직은 웹 문서에 출현하는 단어들에서 키워드를 추출하여 역파일을 작성함으로써 검색에 활용하는 것이 일반적인 방법이다. 그러나 키워드의 출현 위치나 단어빈도를 통한 문서유사도 기법은 사용된 언어가 다르거나 대부분이 앵커텍스트만으로 구성되어 있는 대문페이지처럼 적용하기 어려운 경우가 많다. 이 연구는 계량정보학적 분석 기법 중에서 동시인용 기법을 웹 문서의 하이퍼링크에 적용하여, 웹 문서의 클러스터링 가능성을 실험한다.

  • PDF

서식 문서의 선과 접촉된 숫자열 복원에 관한 연구 (Restoration of Numeral Strings Touched with Lines in Various Form Documents)

  • 이창현;최영우;김경환;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권6호
    • /
    • pp.439-449
    • /
    • 2001
  • 본 논문에서는 서식 문서의 선과 숫자의 획이 접촉된 경우 숫자의 획을 접촉되기 전 상태의 원 이미지로 복원하는 방법을 제안한다. 제안하는 방법에는 서기 문서에서 추출한 숫자열을 대상으로 열 단위로 복원한다. 과정은 우선 숫자열과 접촉된 선의 위치를 찾아내고, 선을 추적하면서 접촉으로 판정되는 영역을 유형별로 분류하여, 각 유형에 적합한 획 복원 방법을 제안한다. 또한 선에 숫자의 획이 완전히 포함된 경우의 복원 방법도 제안하여 현장에서의 서식 처리 과정에서 발생하는 문제점을 해결하고자 하였다. 제안하는 방법을 평가하기 위해서 은행 입출금전표, 신용카드 매출전표 및 NIST 필기 숫자열 데이터베이스 이미지를 사용하였다.

  • PDF

정보검색기반 질의응답 시스템 설계 (Design of a QA System based on Information Retrieval)

  • 김민경;안혁주;김학수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.816-818
    • /
    • 2015
  • 본 논문에서는 질의유형을 통한 검색기반 질의응답 시스템을 구현하기 위한 설계방법을 제안한다. 이를 위해 위키피디아 문서의 링크 데이터를 이용하여 색인 대상문서와 데이터베이스를 구축하는 색인 모델과 2-포아송 모델을 이용하여 얻은 문서들을 색인 데이터베이스를 통해 필터링하여 정답 후보문장을 추출하는 검색모델, 키워드 패턴 매칭 기반 질의유형 분류 모델을 설계하였다.

토픽모델링과 주성분 분석을 활용한 온라인 쇼핑 검색 질의 유형 분류 (A Study on the Types of Online Shopping Queries using Topic Modeling and Principal Components Analysis)

  • 강현아;임희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.765-768
    • /
    • 2020
  • 검색 질의 연구 분야의 대부분 선행 연구는 검색 질의 주제 분류에 집중되어 있으며 질의 자체에 대한 연구자의 정성적인 판단으로 분석되었다. 이는 검색 이후 클릭 된 문서를 고려하지 않고 진행되었다는 점과 분석 주제 및 활용 데이터가 제한적이라는 것에 한계가 있다. 이에 본 연구는 국내 대형 온라인쇼핑몰의 1년간의 검색로그를 활용하여 검색 질의와 검색 이후 조회한 문서명 정보를 기반으로 토픽모델링을 수행하여 검색 질의 주제를 정의하였다. 또한 검색 행동특성에 따른 주제별 성격을 정의하기 위하여 주성분 분석을 통해 주요 변수 추출 후 각 주제별 검색 행동특성을 분석하였다. 본 연구 결과는 효과적인 검색 서비스 구축 및 검색 시스템 개발에 기여 할 것으로 기대된다. 향후 연구로는 텍스트 분류기 모델링 실험을 통해 자동 분류 시스템을 구현할 수 있을 것이다.

질의 응답 시스템에서 질의 카테고리별 개념리스트 구축에 기반한 의미적 질의 확장 (Semantic Query Expansion based on a Question Category Concept List in QA system)

  • 김혜정;강보영;박성배;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.178-180
    • /
    • 2004
  • 질의 응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer tyype) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서의 정답문장에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서, 본 논문은 질의별 카테고리 개념 리스트를 구축하여 효과적인 의미적 질의 확장 방법론을 제안한다. 제안된 방법은 먼저 질문 문장의 패턴 린 질의 정보 유형을 파악하여 질의 카테고리 및 카테고리별 개념 리스트를 구축한다. 그런 후 구축된 질의 개념 카테고리 및 리스트를 활용하여 질의 유형을 학습하고, 새로운 질의가 입력되면 해당 개념 카테고리로 분류한 후, 개념 리스트를 기반으로 개념별 질의 확장을 수행한다. 제안된 시스템의 성능 명가를 위하여, TREC-9의 질의와 TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건을 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

  • PDF

한국어 비교 문장 유형 분류를 위한 변환 기반 학습 기법 (Transformation-based Learning for Korean Comparative Sentence Classification)

  • 양선;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권2호
    • /
    • pp.155-160
    • /
    • 2010
  • 본 논문은 비교마이닝(comparison mining)의 일환인 비교 문장 유형 자동 분류에 관하여 연구한다. 비교마이닝은 텍스트 마이닝의 한 분야로서 대용량의 텍스트를 대상으로 비교 관계를 분석하며, 크게 세 단계의 과정을 거치게 되는데 첫 번째 단계는 대용량의 문서에서 비교 문장만을 식별 후 추출해 내는 과정이고, 두 번째 단계는 추출된 비교 문장들을 비교 유형별로 분류하는 과정이며, 앞의 두 선행 과정이 끝나면 유형별로 비교 속성을 추출 및 비교 관계를 분석하는 세 번째 단계를 수행하게 된다. 본 연구에서는 변환 기반 학습(transformation-based learning) 기법을 이용하여 비교 문장들을 일곱 가지의 유형으로 자동 분류하는 두 번째 과제를 수행한다. 자연어 처리 분야 여러 부문에서 사용되고 있는 변환기반 학습은 오류를 감소시키는 최적의 규칙을 자동으로 생성하여 정답을 찾아가는 규칙 기반 학습 방법이다. 웹상의 다양한 도메인에서 추출된 비교 문장들을 대상으로 유형 분류를 수행한 결과 정확도 80.01%의 성능으로 일곱 가지 유형을 분류할 수 있었다.

이동에이전트를 이용한 XML 정보의 수집 및 분류 (Information Gathering Agent System using XML)

  • 서효정;방대욱
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.131-133
    • /
    • 1999
  • 요즘처럼 웹을 이용하여 저오 검색시 너무나 많은 양의 정보를 수집, 정리, 관리해야 하는 문제에 직면하게 되었다. 또한 인터넷상에는 기존의 텍스트 자료 이외에도 이미지, 사운드, 데이터 베이스 등 우리가 원하는 여러 유형의 자료가 존재한다. 하지만 웹상에서는 텍스트만을 위주로 자료를 검색, 수집, 분류를 한다. 이러한 문제점을 해결하기 위해 XML를 이용하여 정보의 종류에 관계없이 수집할 수 있다. 이 논문에서는 이동 에이전트를 이용한 정보 검색 모형을 제시하고 이때 이동에이전트가 정보의 표현방법으로 XML를 사용한다. 또한 XML의 계층적인 특성을 활용하여 XML 문서의 분류, 병합을 할 수 있다. 따라서 수집된 정보의 정리된 형태로 쉽게 얻을 수 있다.

  • PDF