• 제목/요약/키워드: 문서자동분류

검색결과 311건 처리시간 0.024초

문서 요약 기법을 이용한 자동 문서 범주화 (Automatic Text Categorization Using Text Summarization Techniques)

  • 박진우;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.138-145
    • /
    • 2001
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 분류하는 작업이다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 표현해야 한다. 기존의 연구들은 문장간의 구분 없이, 문서 전체에 나타난 각 자질의 빈도수를 이용하여 문서를 표현 한다. 그러나 하나의 문서 내에서도 중요한 문장과 그렇지 못한 문장의 구분이 있으며, 이러한 문장 중요도의 차이는 각각의 문장에 나타나는 자질의 중요도에도 영향을 미친다. 본 논문에서는 문서에서 사용되는 중요 문장 추출 기법을 문서 분류에 적용하여, 문서 내에 나타나는 각 문장들의 문장 중요도를 계산하고 문서의 내용을 잘 나타내는 문장들과 그렇지 못한 문장들을 구분하여 각 문장에서 출현하는 자질들의 가중치를 다르게 부여하여 문서를 표현한다. 이렇게 문장들의 중요도를 고려하여 문서를 표현한 기법의 성능을 평가하기 위해서 뉴스 그룹 데이터를 구축하고 실험하였으며 좋은 성능을 얻을 수 있었다.

  • PDF

문서의 주제어별 가중치 부여와 단어 군집을 이용한 한국어 문서 자동 분류 시스템 (An Automatic Classification System of Korean Documents Using Weight for Keywords of Document and Word Cluster)

  • 허준희;최준혁;이정현;김중배;임기욱
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.447-454
    • /
    • 2001
  • 새로운 문서를 기존에 존재하는 클래스들에 할당하는 방법을 문서의 자동 분류라고 한다. 문서의 자동 분류는 뉴스 그룹의 기사분류, 웹 문서의 범주화, 전자 메일의 순서화, 사용자의 관심을 학습하여 보다 정확한 정보 검색을 제시하는데 사용될수 있다. 본 논문에서는 한국어 문서분류의 정확도를 높이기 위하여 문서내의 모든 단어들에 대한 확률값을 사용하여, 문서를 분류하는 기존의 방법과 달리 문서의 주제어를 선정하여 주제어로 선정된 단어들에 가중치를 부여하고 그렇지 않은 단어들에 대해서는 제거하너가 낮은 가중치를 부여하는 베이지안 분류자를 사용한다. 문서에는 특징으로 추출된 단어가 적어 문서를 분류하기 위한 만족할 만한 정보를 제공하지 못할 경우에 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 자동 단어 군집화를 통해 형성된 연관 단어 군집을 사용한다. 이러한 방법을 한국어 문서에 적용한 결과 기존의 베이지안 확률을 사용한 분류법보다 향상된 분류 정확도를 얻을 수 있었다.

  • PDF

어휘정보와 통사정보를 모두 이용한 문서분류 (Text Categorization Using Both Lexical Information and Syntactic Information)

  • 박성배;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.37-39
    • /
    • 2001
  • 현재 이용가능한 대부분의 자동문서분류 시스템의 가장 큰 문제는 문서에 포함된 단어 사이의 통사 정보는 무시한 채, 각 단어의 분포만 고려한다는 점이다. 하지만, 통사 정보도 문서 분류를 위해 매우 중요한 정보 중의 하나이다. 본 논문에서는 문서에 나타난 어휘 정보와 함께 통사 정보를 함께 고려하는 자동문서분류 방법을 제시한다. Reuters-21578 말뭉치에 대한 문서분류 실험결과 제시된 방법은 어휘정보만 사용하는 방법과 통사정보만 사용하는 방법 모두보다 높은 성능을 보인다 이 말뭉치에 대해서, 어휘정보만으로 학습된 Support Vector Machine으로 약 77%의 매우 높은 정확도를 얻을 수 있음에도 약 0.63%의 추가적인 성능 향상이 있었다.

  • PDF

레이블이 없는 문서를 이용한 SVM 기반의 점증적 지도학습 (Incremental Superised Learning based on SVM with Unlabeled Documents)

  • 김수영;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.301-303
    • /
    • 2002
  • 컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 수없이 많은 정보가 디지털 형태로 생산되고 있다. 이러한 정보를 사람이 일일이 가공하고 분류하기에는 한계가 있으므로 자동으로 문서를 분류하고자 하는 연구가 대두되었다. 문서를 자동으로 분류하기 위해 기계학습 방법이 많이 이용되고 있다. 기계학습방법을 이용한 문서분류가 좋은 성능을 내기 위해서는 충분한 양의 학습데이터가 필요하다. 학습데이터를 만들기 위해서는 사람이 일일이 분류해야 하므로, 비용이 많이 든다. 본 논문에서는 적은양의 labeled 데이터로부터 시작하여, 점증적으로 unlabeled 데이터를 학습에 참여시킴으로써, 문서분류의 성능을 높이고자 한다. 실험을 통해 Unlabeled 문서데이터를 사용한 것이 좋은 성능을 보였음을 알 수 있다.

  • PDF

학습문서의 개수에 따른 편차기반 분류방법의 분류 정확도 (Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents)

  • 이용배
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.325-332
    • /
    • 2014
  • 일반적으로 자동분류는 학습문서의 개수에 영향을 받는다고 알려져 있지만 실제로 학습문서의 수가 텍스트 자동분류에 어떻게 영향을 주는지 입증한 연구는 거의 없었다. 본 연구에서는 학습문서 수가 자동분류에 어떤 영향을 주는지 알아보기 위해 최근에 개발된 편차기반 분류방법을 중심으로 다른 분류 알고리즘과 비교하는데 초점을 두었다. 실험결과, 편차기반 분류모델은 학습문서의 수가 총 21개(7개 장르)인 상황에서 정확도가 0.8로 베이지안이나 지지벡터기계보다 우수하게 나타났다. 이것은 편차기반 분류모델이 장르내의 주제정보를 이용하여 학습하기 때문에 학습문서의 수가 적더라도 다른 학습방법보다 좋은 자질 선택 능력을 갖는다는 것을 입증한 것이다.

확장된 Relief-F 알고리즘을 이용한 소규모 크기 문서의 자동분류 (Document Classification of Small Size Documents Using Extended Relief-F Algorithm)

  • 박흠
    • 정보처리학회논문지B
    • /
    • 제16B권3호
    • /
    • pp.233-238
    • /
    • 2009
  • 자질 수가 적은 소규모 크기 문서들의 자동분류는 좋은 성능을 얻기 어렵다. 그 이유는 문서집단 전체의 자질 수는 크지만 단위 문서 내 자질 수가 상대적으로 너무 적기 때문에 문서간 유사도가 너무 낮아 우수한 분류 알고리즘을 적용해도 좋은 성능을 얻지 못한다. 특히 웹 디렉토리 문서들의 자동분류에서나, 디스크 복구 작업에서 유사도 평가와 자동분류로 연결되지 않은 섹터를 연결하는 작업에서와 같은 소규모 크기 문서의 자동분류에서는 좋은 성능을 얻지 못한다. 따라서 본 논문에서는 소규모 크기 문서의 자동분류에서의 문제점을 해결하기 위해 분류 사전작업으로, 예제기반 자질 필터링 방법 Relief-F알고리즘을 소규모 문서 내 자질 필터링에 적합한 ERelief-F 알고리즘을 제시한다. 또 비교 실험을 위해, 기존의 자질 필터링 방법 중 Odds Ratio와 정보이득, 또 Relief-F 알고리즘을 함께 실험하여 분류결과를 비교하였다. 그 결과, ERelief-F 알고리즘을 사용했을 때의 결과가 정보이득과 Odds Ratio, Relief-F보다 월등히 우수한 성능을 보였고 부적절한 자질도 많이 줄일 수 있었다.

문서관리를 위한 자동문서범주화에 대한 이론 및 기법 (An Automatic Text Categorization Theories and Techniques for Text Management)

  • 고영중;서정연
    • 정보관리연구
    • /
    • 제33권2호
    • /
    • pp.19-32
    • /
    • 2002
  • 최근 디지털 도서관이 등장하고 인터넷이 폭 넓게 보급되어 온라인 상에서 얻을 수 있는 텍스트 정보의 양이 급증함에 따라 효율적인 정보 관리 및 검색이 요구되고 있다. 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업으로써 효율적인 정보 관리 및 검색을 가능하게 하는 동시에 방대한 양의 수작업을 감소시키는데 그 목적이 있다. 문서 분류를 위해서는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고, 이러한 자질들을 통해 분류할 문서를 색인 과정을 통해 표현한다. 또한, 문서 분류기를 통해 문서를 목적에 맞게 분류한다. 본 논문에서는 자동 문서 범주화를 수행하기 위한 각 단계를 소개하고 각 수행 단계에서 사용되는 여러 가지 기법들을 소개하고자 한다.

웹 에이전트를 위한 문서 자동 분류 (Document Autoclustering for Web Agent)

  • 양찬범;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.54-56
    • /
    • 1999
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심정보를 학습하고 사용자가 필요로 한느 웹 상의 정보를 제공하는 시스템이다. 웹 에이전트는 사용자의 관심정보를 추출하기 위해서 귀납적 기계학습을 수행한다. 이때, 학습의 효율을 높이기 위해서는 관련이 있는 문서들을 그룹화하여 학습 시스템에 제공하여야 한다. 본 논문에서는 비감독 개념 학습 알고리즘인 COBWEB을 이용하여 사용자가 관심을 표시한 문서들의 분류트리를 생성한다. 분류트리는 귀납적 기계학습 시스템의 입력으로 사용될 수 있는 형태가 아니므로 분류 트리의 분석과 문서 분류 후처리 작업을 통해서 문서 집합을 생성해야 한다. 이를 위해서는 분류트리를 분석하여 초기 클러스터를 생성하고, 유사한 클러스터들의 병합을 수행한다. 본 논문에서 제안하는 문서 자동 분류 방식은 비감독 개념 학습 알고리즘이 생성한 문서 분류 트리의 분석을 통해서 충분한 유사도와 적절한 수의 문서를 포함하는 초기 클러스터를 생성할 수 있다. 그러므로 문서 분류의 후처리 작업인 클러스터의 병합 작업에서 불필요한 작업을 제거함으로서 보다 효과적이고 합리적인 문서 분류 작업을 수행한다.

  • PDF

범주 대표어의 가중치 계산 방식에 의한 자동 문서 분류 시스템 (Automatic Document Classification by Term-Weighting Method)

  • 이경찬;강승식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.475-477
    • /
    • 2002
  • 자동 문서 분류는 범주 특성 벡터와 입력 문서 벡터의 유사도 비교에 의해 가장 유사한 범주를 선택하는 방법이다. 문서 분류 시스템을 구현하기 위하여 각 범주의 특성 벡터를 정보 검색 시스템의 역파일 형태로 구축하였으며, 용어 가중치를 계산하는 방법을 달리하여 문서 분류 시스템의 정확도를 실험하였다. 실험 문서는 일간지의 신문기사들을 무작위로 추출한 문서 집합을 대상으로 하였으며, 정보 검색 모델에서 보편적으로 사용되는 TF-lDF 방식이 변형된 방식에 비해 더 나은 성능을 보였다.

  • PDF

스타일에 따른 웹 문서의 자동 분류 (Automatic Classification of Web documents According to their Styles)

  • 이공주;임철수;김재훈
    • 정보처리학회논문지B
    • /
    • 제11B권5호
    • /
    • pp.555-562
    • /
    • 2004
  • 스타일 또는 장르는 문서의 주제와는 다른 문서를 보는 또 하나의 관점이 될 수 있다. 그렇기 때문에 문서의 스타일은 문서 분류의 기준으로 사용될 수 있다. 문서의 스타일에 따른 자동 분류 시스템에 대한 여러 연구들이 수행되어 왔다. 그러나 이런 연구들의 대부분이 일반 문서를 대상으로 수행하였으며, 몇몇 일부의 연구만이 웹 문서를 대상으로 스타일 분류에 대한 연구를 수행하였다. 웹 문서는 일반 문서와는 달리 URL HTML을 갖고 있다. 본 연구에서는 이와 같은 URL과 HTML로부터 추출한 자질들을 웹 문서의 스타일 분류에 사용해 보고자 한다. 실험을 통해서 이와 같은 자질들이 웹 문서의 스타일 분류에 어떤 영향을 미치는지를 밝혀보고자 한다.