• Title/Summary/Keyword: 무진동

Search Result 56, Processing Time 0.024 seconds

A Case Study on the Applicability Evaluation of Electronic Detonator for Non-Vibration Excavation Section (무진동 굴착구간에 대한 전자뇌관의 적용성 평가 사례)

  • Seung-Won, Jung;Jin-Hyuk, Song;Nam-Sun, Hwang;Nam-Soo, Kim;Min-Sung, Jung
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • It was designed as the mechanical excavation mass method on 176m because the safety thing is located around the site. But low-vibration blasting using an electronic detonator was proposed to improve constructability and economy. As a result of the suggestion blasting, both blasting noise and vibration were safe within the allowable limit, confirming the applicability of low-vibration blasting using an electronic detonator to the section. And compared with the mechanical mass excavation method, an economic evaluation was conducted about the section, and it was evaluated that there was an economic advantage as the construction period was reduced by 88 days.

Case History of Vibration-controlled Reckmass Breakage Method by Rock Splitter (할암기를 이용한 무진동 암반 파쇄공법의 현장 적응 사례)

  • 최영천
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.71-78
    • /
    • 2004
  • Explosive blasting, hydaulic power unit and rock splitter are typically utilized for rockmass breakage and cutting in reconstruction of building structures and other construction site. Hydraulic rock cutting method, that can be utilized any weather conditions, has been applied mainly by experience for controling damages caused by vibration, noise and rock cuttings, and reducing damage claim by protecting adjacent structures. However, it is required to understand the characteristics of rockmass to improve operation efficiency. Although every cutting method has its own advantage, but it should be applied by considering site circumstance and rockmass properties in details to maximize the operation efficiency and economic feasibility.

Behavior Analysis of Noise & Vibration-Free Screw Concrete Piles by Means of Numerical Analysis (무소음・무진동을 위한 스크류콘크리트말뚝의 수치해석에 의한 거동분석)

  • Kim, Youngpil;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2010
  • In this study, a new noise & vibration-free screw concrete pile method that was expected environmentally friendly method was introduced, also the numerical analyses of a conventional PHC pile and a new screw concrete pile were done. As a result, the bearing capacity behavior and the settlement behavior of 2 kinds of concrete pile were analyzed and compared.

Evaluation of low-vibration electronic detonator blasting method to improve constructability in non-vibration excavation section (무진동 굴착구간에서의 시공성 향상을 위한 미진동 전자발파공법 평가)

  • Seung-won Jung;Jin-Hyuk Song;Nam-Sun Hwang;Hyun-Gi Kim;Nam-Soo Kim;Jong-woo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.157-173
    • /
    • 2023
  • Although this site is designed with a non-vibration excavation method for a section of 265 m, there are concerns about decline of constructability and economic feasibility. For this reason, the low-vibration electronic detonator blasting method was suggested. To evaluate the applicability of the low-vibration electronic detonator blasting method, the damage range of blasting vibration of low-vibration electronic detonator blasting applied just before the site (suggestion I) and low-vibration electronic detonator blasting constructed close range the subway like this site (suggestion II) was analyzed. As a result of comparing the blasting vibration damage ranges of the two suggestions, the damage range of suggestion II was calculated more conservatively. Considering the specificity of the close range of this site, suggestion II was selected for design change for safer construction. As a result, it is predicted that there will be no damage to the structure even if the 72 m section out of the non-vibration excavation 265 m section is changed to the Low-vibration electronic detonator blasting. And it is evaluated that high economic benefits can be obtained because the total expected excavation period can be reduced by 144 days from 662.5 days.

A Study on the Determination of Construction Method of Screw Concrete Piles for Noise & Vibration-Free (무소음・무진동을 위한 스크류콘크리트말뚝의 시공법설정에 관한 연구)

  • Choi, Yongkyu;Kim, Dongchul;Kim, Sungsu;Nam, Moonseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.15-24
    • /
    • 2010
  • Noise and vibration due to pile driving cause residents nearby construction sites to file civil complaints and to the extent of bringing construction to a halt. To deal with this issue, construction engineers have worked strenuously to develop several types of low noise & low vibration pile methods. In this study, a new noise and vibration-free precast screw pile method proposed as a low noise & low vibration pile. It penetrates into the ground by rotating and pressing to avert noise and vibration while maximizing bearing capacity. A prototype of noise and vibration-free precast screw pile method was manufactured, which is not seen anywhere in Korea and elsewhere, and have undergone pilot tests twice to determine construction method. Based on this study, features of the noise & vibration-free screw pile method, production of screw concrete pile prototype, two pilot tests and subsequent construction method were determined.

Theoretical study on rock excavation method by whitelight thermal stress (백열광을 이용한 무진동, 무소음 암반파쇄공법의 이론적 고찰)

  • Choi, Yong-Ki;Han, Hyun-Hee;Kim, Sung-Hwan;Kim, Hak-Joon;Arrison, Norman L.;Kong, Hoon-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.229-234
    • /
    • 2002
  • Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits such as improvement of workability, reducement of operation period, and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

  • PDF

A Nonlinear Model-Based Anti-Swing Control for Overhead Cranes with High Hoisting Speeds (권상/권하 속도가 큰 경우 크레인의 비선형 무진동 제어)

  • Lee, Ho-Hun;Jeon, Jong-Hak;Choe, Seung-Gap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1461-1467
    • /
    • 2001
  • This paper proposes a new approach for the ant-swing control of overhead cranes. The proposed control consists of a model-based anti-swing control scheme and a practical path planning scheme. The anti-swing control scheme is designed based on the Lyapunov stability theorem; the proposed control does not require the usual constraints of small load mass, small load swing, slow hoisting speed, and small hoisting distance, but guarantees asymptotic stability while keeping all internal signals bounded. The path planning scheme is designed based on the concepts of minimum-time control and anti-swing control; the proposed path planning generates near-minimum-time trajectories independently of hoisting speed and distance. The effectiveness of the proposed control is shown by computer simulation.