• Title/Summary/Keyword: 무인 이동체

Search Result 163, Processing Time 0.032 seconds

MEMS 센서대상 오류주입 공격 및 대응방법

  • Cho, Hyunsu;Lee, Sunwoo;Choi, Wonsuk
    • Review of KIISC
    • /
    • v.31 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • 자율주행 시스템이 탑재되어 있는 무인이동체는 운용환경에 따라 공중, 해상, 육상 무인이동체로 분류할 수 있고 모든 분야에서 관련 기술 개발이 활발히 진행되고 있다. 무인이동체는 자율주행 시스템이 탑재되어 외부 환경을 스스로 인식해 상황을 판단하는 특징을 갖고 있다. 따라서, 무인이동체는 센서로부터 수집되는 데이터를 이용하여 주변 환경을 인식해야 한다. 이러한 이유로 보안 (Security) 분야에서는 무인이동체에 탑재되는 센서를 대상으로 신호 오류주입을 수행하여 해당 무인이동체의 오동작을 유발하는 연구결과들이 최근 발표되고 있다. 신호 오류주입공격은 물리레벨 (PHY-level) 에서 수행되기 때문에, 공격 수행 여부를 소프트웨어 레벨에서 탐지하는 것은 매우 어렵다는 특징을 갖고 있다. 현재까지 신호 오류주입 공격을 탐지할 수 있는 방법은 다수의 센서를 이용하는 센서퓨전 (Sensor Fusion)을 기반으로 하는 방법이 있다. 하지만, 현실적으로 하나의 무인이동체에 동일한 기능을 하는 센서 여러 개를 중복해서 탑재하는 것은 어려움이 있다. 그리고 단일 센서만을 이용하여 신호 오류주입 공격을 탐지하는 방법에 대해서는 아직까지 연구가 진행되고 있지 않다. 본 논문에서는 무인이동체 환경에서 가장 널리 사용되고 있는 MEMS 센서를 대상으로 신호 오류주입 공격을 재연하고, 단일 센서 환경에서 해당 공격을 탐지할 수 있는 방법에 대하여 제안한다.

Development of Ubuntu-based Raspberry Pi 3 of the image recognition system (우분투 기반 라즈베리 파이3의 영상 인식 시스템 개발)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.868-871
    • /
    • 2016
  • Recently, Unmanned vehicle and Wearable Technology using iot research is being carried out. The unmanned vehicle is the result of it technology. Robots, autonomous navigation vehicle and obstacle avoidance, data communications, power, and image processing, technology integration of a unmanned vehicle or an unmanned robot. The final goal of the unmanned vehicle manual not autonomous by destination safely and quickly reaching. This paper managed to cover One of the key skills of unmanned vehicle is to image processing. Currently battery technology of unmanned vehicle can drive for up to 1 hours. Therefore, we use the Raspberry Pi 3 to reduce power consumption to a minimum. Using the Raspberry Pi 3 and to develop an image recognition system. The goal is to propose a system that recognizes all the objects in the image received from the camera.

  • PDF

Application of Wireless Power Transmission Technology to Contactless Umbilical Connector of Unmanned Vehicle (무선 이동체의 비접촉 배꼽장치를 위한 무선전력전송 기술의 응용)

  • Shin, Yujun;Park, Jaehyoung;Kim, Jonghoon;Kwon, Byunggi;Eun, Heehyun;Ahn, Seungyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.713-722
    • /
    • 2017
  • In the future battlefield, the role of the unmanned vehicle is very important. Currently, charging and management systems for unmanned vehicles are all wired. However, for convenience and stability, it is desirable that the charging of the unmanned vehicle uses wireless power transfer system. In this paper, we have studied the application of wireless power transfer system to the charging of unmanned vehicles. Considering the size of the unmanned vehicle and the required power, the transmission coil and the receiving coil are designed through the finite element analysis based magnetic field simulation. The coil was made according to the simulation results and the circuit simulation was performed through the measured parameter values. Finally, we show that wireless power transmission can be applied to unmanned mobile charging through actual experiments.

A study on network based long distance data interworking system using multiple unmanned vehicle (다수 무인이동체를 이용한 네트워크 기반의 원거리 데이터 연동 시스템에 관한 연구)

  • Son, Hyeon-seo;Choi, Sung-chan;Park, Jong-hong;Jung, Sung-wook;Ahn, Il-yeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.605-607
    • /
    • 2022
  • As the industry using unmanned vehicles expands, scenarios in which multiple unmanned vehicles are applied to various fields are attracting attention. One unmanned vehicle has limitations in operating time and range, and by using multiple unmanned vehicles, it has the advantage of providing services in a much wider range and shortening the operating time. Taking advantage of these advantages, recent attempts are being made to apply a number of unmanned mobile vehicles to fields such as disasters and broadcasting beyond military use. In this paper, we present a scenario for a data interworking system that can send and receive data from a distance based on a network using multiple unmanned vehicles.

  • PDF

Suggestion to Use Unmanned Vehicle with IoT about LoRa Network (LoRa망을 이용한 무인이동체 IoT 활용법 제안)

  • Lee, Jae-Ung;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1691-1697
    • /
    • 2018
  • There has been a steady study of unmanned vehicle. So far, continuous research has brought news of the commercialization of unmanned vehicle. In addition, it has been applied in a variety of fields with another industry. A lot of research has been done, too, to apply inert driving indoors. Using LoRa network, which is a network dedicated to IoT, unmanned vehicle control system that is applied to LoRa network from a small space, or from an office hospital to a factory, is installed to increase efficiency when the performs special tasks. This paper presents solutions to a variety of problems by using LoRa network, which is dedicated to IoT, to recognize an unmanned vehicle as a single object, to communicate with surrounding objects, and to receive information necessary for driving indoors from a cloud server.

Analysis of Dedicated Mission Software Architecture for Unmanned Vehicles for Public Mission (공공임무를 위한 무인이동체 탑재용 임무소프트웨어 구조 분석)

  • Park, Jong-Hong;Choi, Sungchan;Ahn, Il-Yeup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.435-440
    • /
    • 2020
  • The application of the unmanned vehicles in various fields has been attracting attention, and the development of a service utilizing unmanned vehicles has been proceeding. As the service market using the unmanned vehicles rapidly increases, the demand for the development of software for performing the mission with unmanned vehicles is increasing. In particular, as the demand for unmanned vehicle utilization services for public missions such as fire detection, mail delivery, and facility management increases, the importance of developing mission software for unmanned vehicle is increasing. To develop common mission software, architecture design should be made so that unmanned vehicle service provider can easily develop software using reusable libraries or functions through analysis commonly required by various public institutions. In this paper, we discuss the research trends of mission software for public mission unmanned vehicles. In addition, the architecture design of developing formal mission software is proposed. Finally, we propose a data transfer architecture between mission software and data platform.

Disign of Unmanned Vehicle Control System with LoRa Network (LoRa망을 활용한 무인이동체 관제 시스템 설계)

  • Lee, Jae-Ung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.44-46
    • /
    • 2018
  • In this paper, we design a system that can control unmanned mobile objects through communication between unmanned mobile object and control server system using LoRa network which is a dedicated IoT network. It is more efficient when the unmanned mobile object performs the special work by installing the LoRa network applied to the unmanned mobile object control system from the small space house or office hospital to the factory. In this paper, we will discuss the design of a system that can improve the social utilization of unmanned mobile objects by making it possible to communicate the events that occur around other mobile objects from the simplification of the navigation path.

  • PDF

Test of a UAV Tracking Antenna System Using GPS (GPS를 이용한 무인항공기 추적안테나 시스템 시험)

  • Roh, Min-Shik;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • The tracking antenna must always point to track moving vehicle for data link. In this paper, we determine pointing angle from the geometric relationship of antenna and UAV(Unmaned Aerial Vehicle) to let an antenna be toward a moving vehicle. The pointing angle of antenna is set through GPS measurement data installed in antenna and UAV. We verify the performance of this system from the fixing a camcoder on the antenna.

Status of unmanned vehicle communication technology (국방 무인이동체 통신 기술 현황)

  • Jinyoung Jang;Byounggi Kim;Jongsoo Lee;Wonyoung Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1179-1180
    • /
    • 2023
  • 국방 분야의 데이터링크 기술은 다양한 군사 응용 분야에서 무인 항공기 및 다른 무인시스템과의 효율적인 통신을 위한 것으로 국내 국방 공용 데이터링크 기술 내용 및 대형/소형 무인이동체 장비 형상을 확인하였다. 소형 무인이동체 데이터링크를 지원하기 위하여 사용되는 기술 현황을 확인하고 문제점을 식별하였다. 마지막으로 향후 군 요구 사항을 충족하기 필요성 및 관련 세부 기술 개발 내용을 제시하였다.

Design of a Smart Attitude Control Algorithm based on the Fuzzy Logic (퍼지 로직 기반 스마트 자세제어 알고리즘의 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.257-262
    • /
    • 2019
  • Recently, with a great deal of attention and utilization to the UAV like a drone, many application cases using UAV in various fields have been proliferated rapidly. These UAV, however, has many risks like balance deviation and drone crash due to the external environmental factors. The attitude control algorithm for UAV is the most important portion in order to maintain the safe management of UAV, and the best solution is PID control algorithm which is generously used and almost perfect attitude control technology nowadays. In this paper, we propose the smart attitude control algorithm using fuzzy logic in order to provide safe and continuous attitude control against external environmental factors, and compare the performance through simulation study between PID and our algorithm.