• 제목/요약/키워드: 무인이동로봇

Search Result 86, Processing Time 0.019 seconds

Development of an Energy Efficient Tri-Rotor Vertical Take Off and Landing Unmanned Aerial Vehicle (에너지 효율적 트리로터 수직이착륙 무인항공기 개발)

  • Park, Hee-Jin;Kong, Dong-Uck;Son, Byung-Rak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.262-268
    • /
    • 2012
  • In the recent research technical solutions have been studied to integrate renewable energy into unmanned aerial vehicles to use it as the main power source. As the weight of the aerial vehicle body is essential for its performance, we consider to use light-weight solar cell technology. Furthermore fuel cells are also integrated create a highly energy-efficient aerial robot. In this paper, construction concept and software design of the tilt-rotor aerial vehicle GAORI is introduced which uses solar cells and fuel cells as power source. The future work direction and prognosis are discussed.

Study of a Leveling Mobile Platform for Take-off and Landing of Unmanned Aerial Vehicles (무인항공기 이착륙을 위한 수평 유지 이동 플랫폼)

  • Lee, Sangwoong;Kawk, Junyoung;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2020
  • Applications for the unmanned aerial vehicle (UAV) have expanded enormously in recent years. Of all its various technologies, the UAV's ability to take off and land in a moving environment is particularly required for military or oceanic usage. In this study, we develop a novel leveling platform that allows the UAV to stably take off and land even on uneven terrains or in moving environments. The leveling platform is composed of an upper pad and a lower mobile base. The upper pad, from which the UAV can take off or land, is designed in the form of a 2 degrees of freedom (DOF) gimbal mechanism that generates the leveling function. The lower mobile base has a four-wheel drive structure that can be operated remotely. We evaluate the developed leveling platform by performing extensive experiments on both the horizontal terrain and the 5-degree ramped terrain, and confirm that the leveling platform successfully maintains the horizontal pose on both terrains. This allows the UAV to stably take off and land in moving environments.

A Study on Mobile Robot for Posture Control of Flexible Structures Using PI Algorithm

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, we propose a method for moving a device such as a flexible air sculpture while stably maintaining the user's desired posture. To accomplish this, a robot system with a structure of a mobile robot capable of running according to a given trajectory was studied by applying the PI algorithm and horizontal maintenance posture control using IMU. The air sculptures used in this study often use thin strings in a fixed posture. Another method is to put a load on the center of gravity to maintain the posture, and it is a system with flexibility because it uses air pressure. It is expected that these structures can achieve various results by combining flexible structures and mobile robots through the convergence process of digital sensor technology. In this study, posture control was performed by fusion of the driving technology of AGV(Automatic Guided Vehicle),, a field of robot, and technologies applying various sensors. For verification, the given performance evaluation was performed through an accredited certification test, and its validity was verified through an experiment.

Three-dimensional Energy-Aware Path Planning for Quadcopter UAV (쿼드콥터 소모 에너지를 비용함수로 하는 3차원 경로계획)

  • Kim, Hyowon;Jeong, Jinseok;Kang, Beomsoo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.9-17
    • /
    • 2020
  • Mobile robots, including UAVs perform missions with limited fuel. Therefore, the energy-aware path planning is required to maximize efficiency when the robot is operated for a long time. In this study, we estimated the power consumption for each maneuver of a quadcopter UAV in the 3D environment and applied to the cost functions of D Lite. The simulations were performed in a 3D environment that is similar to the industrial sites. The efficiency of path generation was high when the energy-aware path planning with simplified heuristic was applied. In addition, the energy-aware path was generated 19.3 times faster than the shortest path with a difference within 3.2%.

Design of a Track Guidance Algorithm for Formation Flight of UAVs (무인기의 편대비행을 위한 트랙유도 알고리즘 설계)

  • Lee, Dongwoo;Lee, Jaehyun;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper presents a modified track guidance algorithm for formation flight of multiple UAVs. The suggested guidance algorithm is the spatial version of the first order dynamic characteristics for a time-dependent system so the algorithm is able to generate a path without overshoot to track the desired line. A crucial design parameter is a spatial constant that controls the shape of the convergence to an assigned flight path similarly to a time constant. Reference flight trajectories are designed based on a two-dimensional vehicle model, and the performance of the proposed guidance law is verified by numerical simulation using rigid body UAV dynamics with MATLAB/Simulink Aerosim Blockset.

Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System (초음파 위치인식 시스템을 이용한 차량의 무인주행)

  • Kim, Su-Yong;Lee, Jung-Min;Lee, Dong-Hwal;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

An Adaptive Fuzzy Control System for the Speed Control of the Autonomous Surface Vehicle with Nonaffine Nonlinear Dynamics (비-어파인 비선형 동특성을 갖는 무인 자율 이동 보트의 속도 제어를 위한 적응 퍼지 제어 계통)

  • Park, Young-Hwan;Lee, Jae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, an adaptive fuzzy control system is proposed for the speed control of the ASV (Autonomous Surface Vehicle) with nonaffine nonlinear system dynamics. We consider the turning speed of the screw propeller to be the control input instead of thrust so that we do not have to know the exact function between turning speed and thrust. But in this case, the ASV becomes a nonaffine nonlinear system because thrust is a nonlinear function of the turning speed. To solve this problem, we propose a Takagi-Sugeno fuzzy-model-based control system and simulation studies are performed. Simulation results show the effectiveness of the proposed control scheme.

An intelligent control system design for autonomous underwater vehicle (무인 수중운동체를 위한 지능제어시스템 설계)

  • Lee, Dong-Ik;Kwak, Dong-Hoon;Choi, Jung-Lak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.227-237
    • /
    • 1997
  • Autonomous Underwater Vehicles(AUVs) have become an important tool for various purposes in subsea: inspection, recovery, construction, etc., and the development of autonomous control system is luglay desirable- thete zffe many problems associated with designing the control system for AUV due to unknown underwater envimn-Tnent, the possibility of subsystem failures, and unpredictable changes in the dynamics of the vehicle. In this paper, an autonomous control system based on the intelligent control theory to enhance operation efficiency of the ALTV is presented. The control system has a hierarchical structure which consists of mission planning level, mission control level, navigation level, and execution level. The performance of the control system is investigated by computer simulation. The results show that the proposed control system can be applied successfully to the AUV in spite of the possibility of failures in the vehicle and the collision hazard in the sea environment.

  • PDF

Unmanned accident prevention Arduino Robot using color detection algorithm (색 검지 알고리즘을 이용한 무인 사고방지 아두이노 로봇 개발)

  • Lee, Ho-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.493-497
    • /
    • 2015
  • This study was started with concern about problem of increasing physical and personal injury caused by traffic accidents, despite of technological advances in transportation. As the vehicles, which is currently produced, informs the driver only detecting the proximity of an object by the front and rear sensor, this study implemented the color detection algorithm, the circular shape recognition algorithm, and the distance recognition algorithm and built the accident prevention beyond accident perception, which commends to avoid the object or to stop the robot, if object was detected by algorithms. For the simulation, we made the Arduino vehicle robot equipped with compact wireless communication camera and confirmed that the robot successfully avoids an object or stops itself in simulated driving.

  • PDF

Status of Ocean Observation using Wave Glider (무인해상자율로봇(Wave Glider)을 이용한 해양관측 현황)

  • Son, Young Baek;Moh, Taejun;Jung, Seom-Kyu;Hwnag, Jae Dong;Oh, Hyunju;Kim, Sang-Hyun;Ryu, Joo-Hyung;Cho, Jin Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.419-429
    • /
    • 2018
  • An unmanned autonomous maritime surface system can move the vehicle to the areas for observing the ocean accidents, disasters, and severe weather conditions. Detection and monitoring technologies have been developed by the converging of the regional and local surveillance system. Wave Glider, one of the autonomous maritime surface systems, is ocean-wave propelled autonomous surface vehicle and controlled using Iridium satellite communication. In this study, we carried out two-time Wave Glider observations for 2016 and 2017 summer in the East China Sea that the area was influenced by low-salinity water. We observed the sea surface warming effect due to the low-salinity water using the regional (satellite) and local (Wave Glider) surveillance system. We also monitored the effect of the typhoon and understood the change of the ocean-atmosphere environments in real-time. New unmanned surface system with autonomous system and high endurance structure can measure comprehensively and usefully a long observation in complicated ocean environments because of connecting with other surveillance systems.