• Title/Summary/Keyword: 무인이동로봇

Search Result 86, Processing Time 0.029 seconds

Integrated Simulation Environment for Heterogeneous Unmanned Vehicle using ROS and Pixhawk (ROS와 픽스호크를 활용한 이기종 무인 이동체간 통합 시뮬레이션 환경 구축)

  • Kim, Hyeong-Min;Lee, Dae-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • Cooperative systems among various unmanned vehicles are widely used in various field and emerging. Unmanned vehicles are able to operate various missions without operator onboard and they are highly stable. Collaborative work of multiple unmanned vehicles is emphasized due to the difficulty of recent missions such as SEAD (Suppression of the Enemy Air Defenses), MUSIC (Manned Unmanned Systems Integration Capability), goldentime in the rescue mission. In this study, ROS and Pixhawk were proposed as a method of construction of a collaboration system and framework for an integrated simulation environment for heterogeneous unmanned vehicles is proposed. Totally 5 unmanned vehicles were set for the simulation for the observation of illegal fishing boats. This paper shows the feasibility of the cooperative system using ROS and Pixhawk through the simulation and the experiment.

Object Color Identification Embedded System Realization for Uninhabited Stock Management (무인물류관리시스템을 위한 물체컬러식별 임베디드시스템 구현)

  • Lar, Ki-Kong;Ryu, Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • An object color identification and classification embedded system realization for uninhabited stock management is presented in this paper. The embedded system is realized by using ultrasonic sensor to extract the object and distance, and detecting binary image from USB CCD camera. The algorithm is identified by comparing the reference pattern with the color pattern of input image, and move to the settled rack at the store. The experimental result leads to use the uninhibited stock management with practice as a robot.

  • PDF

Navigation of Unmanned Vehicle Using Relative Localization and Magnetic Guidance (상대위치인식과 자계안내를 이용한 무인주행차량의 주행기법)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.430-435
    • /
    • 2011
  • In this paper, a navigation technology of an unmanned vehicle using relative localization and magnetic guidance is proposed. Magnetic guidance system had been developed as a robust autonomous driving technology as long as magnetic fields on the path are detected. Otherwise, if magnetic fields were not detected due to some reasons, the vehicle could not drive. Therefore, in order to overcome the drawback, we propose that relative localization would be combined to magnetic guidance system. To validate the usefulness of the proposed method, a robotic vehicle was set up with the magnetic guidance system and the relative localization. In addition, the unmanned driving test was realized on the road without the magnetic fields so that the proposed method is verified by the experiment.

POPULAR : POwer Panoramic vision and Ultra Locomotion with Android support Robot (POPULAR : 안드로이드로 제어하는 높은 이동성의 파노라마 비전 로봇)

  • Sung, Ki-Hyuk;Kim, Jee-Woo;Choi, Min-Soon;Lee, Hong-Gu;Cha, Jae-Won;Kim, Jong-Kook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.46-47
    • /
    • 2012
  • 본 논문은 360도 전방향을 찍을 수 있는 Omni Directional Lens를 장착한 카메라 로봇에 대해 소개한다. 이는 여러 대의 안드로이드 폰으로 원격에서 접속하여 360도 전방의 파노라마 영상을 받아볼 수 있으며, 마스터 권한을 가진 안드로이드 폰의 경우, 카메라 로봇을 원격으로 제어할 수 있다. 이 로봇은 원격에서 무인 감시 시스템 등 여러 가지 영역에서 활용될 수 있다.

Embedded Image Processing for Wall Climbing Robot (벽오르는 로봇의 임베디드 영상처리 구현)

  • Kweon, Hyok-Sung;Lee, Jee-Soo;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.519-522
    • /
    • 2012
  • 본 논문은 진공흡착방식을 이용한 벽오르는 로봇에 탑재하기 위한 임베디드 시스템의 설계와 영상처리 알고리즘의 구현에 관한 연구이다. 벽로봇은 안정적인 부착과 이동성을 기반으로 벽면에서의 위험 요인 발견과 지능적인 처리를 위해 영상처리가 가능하고 원격의 스마트 단말기와 실시간 통신이 가능한 환경을 구축하였으며 이상 물질을 탐지하기 위해 색상성분을 정규화하고 특정객체를 탐지 후 영상을 전송하는 방법을 구현하였다. 이러한 기능은 무인로봇을 이용해 위험한 벽 환경에서의 균열이나 이상 원인을 지능적으로 탐색하는 분야에 응용 가능하다.

Warehouse Fire Suppression Robot with Image-based Deep learning (영상기반 딥러닝을 이용한 창고 화재 진압 로봇)

  • Lee, Wan-gi;Cho, Beom-yeon;Lee, Han-se;Lee, Kang-ju;Kim, Hyung-hoon;Shim, Hyeon-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.887-889
    • /
    • 2022
  • 화재로 발생하는 산업시설의 인명·재산 피해를 줄이고 기존 소방 설비의 단점을 보완하는 소방 로봇을 제안한다. 소방 로봇은 무인 시스템으로 설계되었으며 6개의 핵심 기능인 화재 감지, 화재 진압, 현장 이동, 화재 알림, 소방서 신고, 현장 모니터링으로 구성된다. 로봇의 구성은 구동부, 제어부, 소화부로 이루어져 있으며, 각 구성 중 일부를 선정하고 테스트 통하여 화재 진압에 유효함을 증명하였다.

Autonomous Flight System of UAV through Global and Local Path Generation (전역 및 지역 경로 생성을 통한 무인항공기 자율비행 시스템 연구)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, a global and local flight path system for autonomous flight of the UAV is proposed. The overall system is based on the ROS robot operating system. The UAV in-built computer detects obstacles through 2-D Lidar and generates real-time local path and global path based on VFH and Modified $RRT^*$-Smart, respectively. Additionally, a movement command is issued based on the generated path on the UAV flight controller. The ground station computer receives the obstacle information and generates a 2-D SLAM map, transmits the destination point to the embedded computer, and manages the state of the UAV. The autonomous UAV flight system of the is verified through a simulator and actual flight.

Study on the line tracer robot applying the intellectual PID (지적 PID를 적용한 라인 트레이스 로봇에 관한 연구)

  • Lee, Dong-Heon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Choi, Myoung-Hoon;Lim, Jae-Jun;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.731-733
    • /
    • 2016
  • The primary goal of the line tracer is to accurately and quickly detect the movement up to the target position given by the sensor juhaengseon. It has been used in applications in various fields such as the current unmanned transport vehicles, laser cutting machine, autonomous mobile robots and unmanned driving is possible, and is held annually at various universities in the competition field with the possibility of great progress, depending on the application. However, there arises a large difference in running performance, depending on the hardware design and control. In this paper, improving the characteristics of the tracer line and characters to design a PID controller is to apply the point on ways of improving the properties of the system.

  • PDF

3D Information based Visualization System for Real-Time Teleoperation of Unmanned Ground Vehicles (무인 지상 로봇의 실시간 원격 제어를 위한 3차원 시각화 시스템)

  • Jang, Ga-Ram;Bae, Ji-Hun;Lee, Dong-Hyuk;Park, Jae-Han
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.220-229
    • /
    • 2018
  • In the midst of disaster, such as an earthquake or a nuclear radiation exposure area, there are huge risks to send human crews. Many robotic researchers have studied to send UGVs in order to replace human crews at dangerous environments. So far, two-dimensional camera information has been widely used for teleoperation of UGVs. Recently, three-dimensional information based teleoperations are attempted to compensate the limitations of camera information based teleoperation. In this paper, the 3D map information of indoor and outdoor environments reconstructed in real-time is utilized in the UGV teleoperation. Further, we apply the LTE communication technology to endure the stability of the teleoperation even under the deteriorate environment. The proposed teleoperation system is performed at explosive disposal missions and their feasibilities could be verified through completion of that missions using the UGV with the Explosive Ordnance Disposal (EOD) team of Busan Port Security Corporation.

Survey on Visual Navigation Technology for Unmanned Systems (무인 시스템의 자율 주행을 위한 영상기반 항법기술 동향)

  • Kim, Hyoun-Jin;Seo, Hoseong;Kim, Pyojin;Lee, Chung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • This paper surveys vision based autonomous navigation technologies for unmanned systems. Main branches of visual navigation technologies are visual servoing, visual odometry, and visual simultaneous localization and mapping (SLAM). Visual servoing provides velocity input which guides mobile system to desired pose. This input velocity is calculated from feature difference between desired image and acquired image. Visual odometry is the technology that estimates the relative pose between frames of consecutive image. This can improve the accuracy when compared with the exisiting dead-reckoning methods. Visual SLAM aims for constructing map of unknown environment and determining mobile system's location simultaneously, which is essential for operation of unmanned systems in unknown environments. The trend of visual navigation is grasped by examining foreign research cases related to visual navigation technology.