• Title/Summary/Keyword: 무응답

Search Result 432, Processing Time 0.034 seconds

The Effect of Survey Refusal and Noncontact on Nonresponse Error: For Economically Active Population Survey (응답 거부와 부재율이 무응답 오차에 미치는 영향: 경제활동인구조사를 중심으로)

  • Kim, Seo-Young;Kwon, Soon-Pil
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.667-676
    • /
    • 2009
  • This study investigates the effect of survey refusal and noncontact on the nonresponse error in the household survey. For this purpose we analyzed the data of the interviewer's field work report. The survey data quality is affected by nonresponse rate and nonresponse error, and also nonresponse rate measures the reliability of the survey data. The household survey mainly contains two types of nonresponses of refusals and noncontacts. These refusals and noncontacts have different effect on the nonresponse error. This could be a venue for future research interested in decreasing the error due to noncontacts and refusals.

패널무응답의 가중수정 방법

  • 신민웅;윤연옥
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2002.06a
    • /
    • pp.157-162
    • /
    • 2002
  • 패널 무응답자(panel nonrespondent)란 처음 조사에서는 응답을 하였으나 나중 조사에서는 응답을 하지 않은 사람을 의미한다. 패널조사에서는 앞 단계에서의 응답으로부터 뒷 단계의 무응답에 대한 정보를 얻을 수 있다. 무응답에 대한 수정 방법은 어떤 보조 변수들을 선택하고, 그 변수들이 수정하는 데 어떻게 사용하는 가를 결정하는 것이다. 우리는 가중 수정을 패널 무응답자에 대해서만 생각한다. 이러한 가중은 패널 무응답자에 대하여 보상하기 위하여 패널 무응답의 가중값을 수정한다. 종속 변수로서 패널응답 상태(status)는 로지스틱 회귀분석으로 패널 무응답에 대한 모형을 선택하는 방법이다. 로지스틱 회귀분석에서 패널무응답과 상관이 있는 변수들은 패널무응답 편향을 감소시키기 위하여 가중 수정에서 사용하기 위한 변수들이다.

  • PDF

Handling the nonresponse in sample survey (설문조사에서의 무응답 처리)

  • Lee, Hwa-Jung;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1183-1194
    • /
    • 2012
  • When it comes to a survey, no answer would occur frequently. Therefore various methods for handling nonresponse have been applied to analyse the survey. In this paper, the ratio of occurrence of two type of nonresponse cases - unit nonresponse and item nonresponse - is presented using previous real survey data, and we compared complete data and data with nonresponse. We suggest the reason of happening of nonresponse and the ratio of nonresponse using data collected through group interviews.

Analysis on the Effect of Unit Non-Response Adjustment using the Survey of Household Finances (가계금융조사를 활용한 단위무응답 조정효과 분석)

  • Baek, Jeeseon;Shim, Kyuho
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.375-387
    • /
    • 2013
  • Unit non-response of surveys reduces the efficiency of the estimates and also causes non-response bias especially when there is large difference between respondents and non-respondents. Non-response weighting adjustments have usually been used to compensate for non-response. It is not easy to examine the non-response bias as well as to obtain information on the non-respondents in sample surveys. A household panel survey, called The Survey of Household Finances, was conducted in both 2010 and 2011. In this paper, we assume that non-response households in Wave 2 have strong non-response (non-cooperative) tendency. We classify those households into non-response households in Wave 1. Under this assumption, the characteristics of non-response households, the non-response bias and the effect of non-response adjustments are investigated.

The unit-nonresponse status and use of weight in the KCYPS (한국아동·청소년패널조사자료에서 단위무응답의 실태 및 가중치 적용)

  • Lee, Hwa-Jung;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1397-1405
    • /
    • 2014
  • Usually unit-nonresponse or item-nonresponse occurs in the survey. In case the rate of nonresponse is high, the analysis ignoring nonresponse may cause the wrong effect. The characterization of nonresponse is required. In a cross-sectional data, it is possible to study the characteristics of item-nonresponse but it is hard to study the characteristics of the unit-nonresponse. In order to identify the characteristics of the unit-nonresponse, this study used the first-year student of middle schools in the Korea children and youth panel survey (KCYPS) data. We investigated the handling situation of nonresponse and analyzed the characteristics of the unit-nonresponse. Most of the papers applied the way of getting rid of nonresponse, so that there was little paper using weights. In this paper, we compared the results of the analyses depending on whether the weight is used or not. The method of using weights showed statistically significant results much more than that of removing. More discussion will be needed.

농가경제조사의 무응답 대체군 형성 방안

  • 이기재;김규성;김진
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.49-54
    • /
    • 2004
  • 본 연구에서는 표본 농가의 교체나 무응답으로 인한 데이터의 손실을 최소화하기 위하여 핫덱방법을 적용할 때 필요한 무응답 대체군 형성 방안을 제안하였다. 농가경제조사의 무응답 현황과 특성을 살펴보고, 대체군 형성 방안들을 비교할 수 있는 측도를 제안하였다. 제안된 비교 측도를 이용해서 대체군 형성 방안들을 비교하였다.

  • PDF

민감한 정보를 얻기 위한 대체 전략에 관한 연구

  • Hong, Gi-Hak;Lee, Gi-Seong;Son, Chang-Gyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.195-199
    • /
    • 2003
  • Hansen과 Hurwitz(1946)는 우편조사에서의 무응답 문제를 처리하는 방법으로 표본을 응답결과에 따라 응답층과 무응답층으로 나눈 다음, 무응답층의 일부를 랜덤 추출하여 면대면 직접조사에 의해 무응답층의 정보를 얻는 방법을 제안하였다. 본 연구에서는 민감한 모집단에 대한 자료수집 방법으로 직접질문 방법인 Black-Box 방법과 간접질문 방법인 확률화응답기법(RRT)의 결합적 방법을 제시하였고, 층화이중 추출방법을 이용하여 모수를 추정하였다.

  • PDF

Forming Weighting Adjustment Cells for Unit-Nonresponse in Sample Surveys (표본조사에서 무응답 가중치 조정층 구성방법에 따른 효과)

  • Kim, Young-Won;Nam, Si-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.103-113
    • /
    • 2009
  • Weighting is a common form of unit nonresponse adjustment in sample surveys where entire questionnaires are missing due to noncontact or refusal to participate. A common approach computes the response weight as the inverse of the response rate within adjustment cells based on covariate information. In this paper, we consider the efficiency and robustness of nonresponse weight adjustment bated on the response propensity and predictive mean. In the simulation study based on 2000 Fishry Census in Korea, the root mean squared errors for assessing the various ways of forming nonresponse adjustment cell s are investigated. The simulation result suggest that the most important feature of variables for inclusion in weighting adjustment is that they are predictive of survey outcomes. Though useful, prediction of the propensity to response is a secondary. Also the result suggest that adjustment cells based on joint classification by the response propensity and predictor of the outcomes is productive.

이중 추출 방법을 이용한 단위 무응답의 가중치 조정방법에 관한 연구

  • Yeom, Jun-Geun;Son, Chang-Gyun;Jeong, Yeong-Mi
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.13-18
    • /
    • 2002
  • 이중추출(two-phase)접근방법 이용의 주목적은 관심변수와 보조변수사이의 관계를 이용해서 더 좋은 추정을 하고자 하는 것이다. 특히 이 방법은 층화, 무응답 문제에 적용하는 경우 상당히 효과적이다. 본 논문에서는 무시할 수 있는 무응답이 발생했을 때 이중추출기법을 이용해서 g-가중치와 응답확률을 각 단계별로 조정해줌으로써 무응답 보정추정량과 분산추정량을 구했다.

  • PDF

A study on multiple imputation modeling for Korean EAPS (경제활동인구조사 자료를 위한 다중대체 방식 연구)

  • Park, Min-Jeong;Bae, Yoonjong;Kim, Joungyoun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.685-696
    • /
    • 2021
  • The Korean Economically Active Population Survey (KEAPS) is a national survey that produces employment-related statistics. The main purpose of the survey is to find out the economic activity status (employed/ unemployed/ non-employed) of the people. KEAPS has a unique characteristics caused by the survey method. In this study, through understanding of structural non-response and utilization of past data, we would like to present an improved imputation model. The performance of the proposed model is compared with the existing model through simulation. The performance of the imputation models is evaluated based on the degree of mathing/nonmatching rates. For this, we employ the KEAPS data in November 2019. For the randomly selected ones among the total 59,996 respondents, the six explanatory variables, which are critical in determining the economic activity states, are treated as non-response. The proposed model includes industry variable and job status variable in addition to the explanatory variables used in the precedent research. This is based on the linkage and utilization of past data. The simulation results confirm that the proposed model with additional variables outperforms the existing model in the precedent research. In addition, we consider various scenarios for the number of non-responders by the economic activity status.