• Title/Summary/Keyword: 무요소해석법

Search Result 129, Processing Time 0.031 seconds

Kirchhoff Plate Analysis by Using Hermite Reproducing Kernel Particle Method (HRKPM을 이용한 키르히호프 판의 해석)

  • 석병호;송태한
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.67-72
    • /
    • 2003
  • For the analysis of Kirchhoff plate bending problems, a new meshless method is implemented. For the satisfaction of the $C^1$ continuity condition in which the first derivative is treated an another primary variable, Hermite interpolation is enforced on standard reproducing kernel particle method. In order to impose essential boundary conditions on solving $C^1$ continuity problems, shape function modifications are adopted. Through numerical tests, the characteristics and accuracy of the HRKPM are investigated and compared with the finite element analysis. By this implementatioa it is shown that high accuracy is achieved by using HRKPM for solving Kirchhoff plate bending problems.

Development of Special Purpose Computer Program for the Analysis of Car Interior Noise (자동차 차실소음 해석을 위한 전용 프로그램의 개발)

  • 박동철;강연준;이장무;김석현;김중희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.57-61
    • /
    • 1991
  • 최근 차량의 고급화에 따라 차실 소음 저감에 대한 연구가 많이 수행되고 있다. 차실의 소음은 주로 엔진 또는 동력전달 장치의 진동과 도로의 요철로 생기는 차체의 진동으로부터 발생된다. 차실에서 20-200Hz의 저주파수대의 소음은 주로 차체 진동과의 연성 효과로 기인한다. 따라서 이 주파수영역에 있어서 소음의 특성을 파악하기 위해서는 차실의 음향 모우드 해석과 차체 구조물의 진동과 차실 음향 모우드의 상호관계를 고려한 구조-음향 연성 해 석이 필요하다. 차실의 음향 모우드 해석을 위해서는 실험적 방법과 유한 요 소법을 이용하는 방법이 있다. 유한 요소법을 이용하여 음향 특성을 결정하 는 경우, 큰 어려움은 없으나 밀폐된 공동에서 경계면을 이루는 구조물의 진 동에 의해 음이 발생되는 경우 단순히 공간의 음향 특성만으로는 음향 응답 을 예측할 수 없게 된다. 즉, 경계면에서 반사되는 반사파는 경계면의 탄성 변위에 의해 운동 특성이 변화되어 반사되므로 입사파와 다른 특성을 가지 게 된다. 따라서 이러한 구조 진동 특성과 음향 특성을 모두 고려한 연성 해 석을 수행하여야 하며, 음향 모우드와 구조 진동 모우드와의 연성에 의한 음 향 응답 특성을 결정하기 위한 수치 해석 프로그램을 개발하게 되었다. 본 연구에서는 전.후 처리 및 사용자 편의성을 염두에 두고 차실소음해석 전용 프로그램(ACSTAP: Acoustical and structural, coupling analysis program) 을 작성하고 이를 실차에 적용하여 유용성을 보였다.

  • PDF

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

A Method of Analysis to Predict Sound Transmission Loss of an Extruded Aluminum Panel for Use on Railway Vehicles (철도차량용 알루미늄 압출재의 음향 투과손실 예측에 관한 연구)

  • Kim, Kwanju;Lee, Jun-Heon;Kim, Dae-Yong;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • The frame elements of modern high speed trains are typically fabricated with extruded aluminum panels. However, the sound transmission loss (STL) of extruded aluminum panels is less satisfactory than flat panels with the same surface density. This study proposes a method for prediction of the sound transmission loss of extruded aluminum panels using finite element analysis. The panel is modeled by finite element analysis, and the STL is calculated using a measure of Sommerfeld radiation at the specimen surface, boundary conditions, and the internal loss factor of the material. In order to verify the validity of the predicted value, intensity transmission loss was measured on the aluminum specimen according to ASTM E2249-02. The proposed method of analysis will be utilized to predict the sound insulation performance of extruded aluminum panels for railway vehicles in the design stage, and to establish measures for their improvement.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

A Study on the Analysis Parameter Used in Improved EFG Crack Analysis Technique Based on Error Estimate (오차분석을 통한 개선된 EFG 균열해석기법의 해석계수 영향평가)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.703-713
    • /
    • 2002
  • Recently, an improved EFG(Element-Free Galerkin) crack analysis technique, which includes a discontinuous approximation and a singular basis function on the auxiliary supports, was developed. The technique is able to accurately analyze the crack propagation problem without any modification of the analysis model; however, it shows some dependency on the analysis parameters used. In this study, the effect of analysis parameters such as the size of compact support, dilation parameter, the smoothness of shape function around the crack tip, and the number of node using auxiliary supports on the accuracy of solution has been investigated. Through a patch test with a crack, relative L₂ error norm of stresses and the stress intensity factor were computed and compared for various analysis parameters and the results were presented as guidelines for adequate choice of analysis parameters.

A Numerical Study on the Behavior of Steel Pipes in Umbrella Arch Method (Umbrella Arch 공법 적용시 강관의 거동에 관한 수치해석적 연구)

  • 차민웅;이승도;문현구
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The effectiveness of UAM is generally accepted, but there has not been much rigorous study on UAM and its mechanical support mechanism is yet to be established. Also, most of UAM installations depend on empirical judgement rather than on engineering knowledge. In this study, an attempt to confirm the support effects and to understand the support mechanism of UAM has been made by analyzing the mechanical behavior of umbrella pipes installed in various ground conditions. The effects of overburden thickness, pipe size, overlap length and the placement of steel arch are studied using a three-dimensional finite element method. From the numerical parametric study, the support mechanism of UAM has been confirmed by analyzing the structural forces in the umbrella pipes due to the excavation.

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

A Study on the Adaptive Refinement Method for the Stress Analysis of the Meshfree Method (적응적 세분화 방법을 이용한 무요소법의 응력 해석에 관한 연구)

  • Han, Sang-Eul;Kang, Noh-Won;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, an adaptive node generation procedure in the radial point interpolation method is proposed. Since we set the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smoothy nodal configuration, it's regenerated by local Delaunay triangulation algorithm This technique was originally developed to generate a set of well-shaped triangles and tetrahedra. To demonstrate the performance of proposed scheme, the results of making optimal nodal configuration with adaptive refinement method are investigated for stress concentration problems.

  • PDF