• Title/Summary/Keyword: 무선 충전

Search Result 227, Processing Time 0.025 seconds

Design of Wireless Electric Vehicle Charging Circuits with Intermediate Coil (보조권선을 포함하는 전기차 충전용 무선전력전송회로 설계기법)

  • Oh, Kwang-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.161-162
    • /
    • 2016
  • 본 논문에서는 권선 사이의 자계결합도 변동을 고려하여 자기공진 방식의 보조권선을 포함하는 전기차 충전용 무선전력전송회로의 설계기법을 제시한다. 전기차 충전용 무선전력전송회로를 설계하기 위해서는 회로의 동작주파수가 표준규격에 의해서 일정범위로 제한되고 1차측과 2차측 권선의 정렬상태에 따라서 자계결합도가 변동할 수 있다는 점이 고려되어야 한다. 본 논문에서는 동작주파수의 제한범위 및 자계결합도의 변동을 고려하여 1차측에 보조권선을 포함하는 자기공진형 무선전력전송회로의 설계기법을 제시한다.

  • PDF

Design of EMI reduction of Electric Vehicle Wireless Power Transfer Wireless Charging Control Module with Power Integrity and Signal Integrity (전원무결성과 신호무결성을 갖는 전기차 무선전력전송 무선충전컨트롤모듈 EMI 저감 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.452-460
    • /
    • 2021
  • As the global electric vehicle (EV) market expands, eco-friendly EV that complement performance and safety problems continue to be released and the market is growing. However, in the case of EVs, the inconvenience of charging, safety problems such as electric shock, and electromagnetic interference (EMI) problems caused by the interlocking of various electronic components are problems that must be solved in EVs. The use of wireless power transmission technology can solve the problem of safety by not dealing with high current and high voltage directly and solving the inconvenience of charging EVs. In this paper, in order to reduce EMI a wireless charging control module, which is a key electronic component of WPT of EV. EMI reduction was designed through simulation of problems such as resonance and impedance that may occur in the power supply and signal distortion between high-speed communication that may occur in the signal part. Therefore, through the EMI reduction design with power integrity and signal integrity, the WPT wireless charging control module for electric vehicles reduces 10 dBu V/m and 15 dBu V/m, respectively, in 800 MHz to 1 GHz bands and 1.5 GHz bnad.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

Analysis of Security Issues in Wireless Charging of Electric Vehicles on the Move (이동 중인 전기자동차 무선충전의 보안위협 분석)

  • Rezeifar, Zeinab;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.941-951
    • /
    • 2016
  • Limitation of fossil energy from one side and the efficiency of the electrical engine from another side motivate the industrials to encourage people for utilizing electric vehicles (EVs). To decrease the cost of EVs, the size of battery should be reduced which causes an inconvenient frequent recharging. Wireless charging is a solution for charging of electric vehicles on the move, but frequent charging causes to disclose users' location information. In this paper, we first propose an infrastructure for wireless charging of electric vehicles, and then we explain security issues that can be stated in this condition.

Wireless Power Transfer Technologies Trends (무선전력전송에 대한 기술 개발 동향)

  • Eom, T.Y.;Oh, C.S.;Park, S.J.
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.174-178
    • /
    • 2015
  • We have surveyed on technical method of wireless power transfer and have also surveyed on applications of the wireless charging for mobiles and of the wireless charging for electrical vehicle and electrical equipments. In this study, we have described about wireless power transfer and have analyzed and checked wireless power transfer prospects of applications and practical development.

Battery Charging System using Magnetic Induction (자기유도를 이용한 배터리 충전 시스템)

  • Lim, Ji-Hun;Han, Ki-Dong;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2239-2244
    • /
    • 2013
  • Industrial machines have constraints on movement due to its wire for power supply. Recently, the research on wireless power supply for industrial machine which is required to move freely is receiving a lot of attention. In this paper, we suggest a magnetic induction system which can charge a equipment's battery with wireless at a close range. The system was designed to operate at 13.56 MHz and a distance of 20~30 mm between the transmitting and the receiving power module. From experiment, it was found that it takes about 135 minutes for charging the battery with about 15 V using the proposed system.

Application of Wireless Power Transmission Technology to Contactless Umbilical Connector of Unmanned Vehicle (무선 이동체의 비접촉 배꼽장치를 위한 무선전력전송 기술의 응용)

  • Shin, Yujun;Park, Jaehyoung;Kim, Jonghoon;Kwon, Byunggi;Eun, Heehyun;Ahn, Seungyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.713-722
    • /
    • 2017
  • In the future battlefield, the role of the unmanned vehicle is very important. Currently, charging and management systems for unmanned vehicles are all wired. However, for convenience and stability, it is desirable that the charging of the unmanned vehicle uses wireless power transfer system. In this paper, we have studied the application of wireless power transfer system to the charging of unmanned vehicles. Considering the size of the unmanned vehicle and the required power, the transmission coil and the receiving coil are designed through the finite element analysis based magnetic field simulation. The coil was made according to the simulation results and the circuit simulation was performed through the measured parameter values. Finally, we show that wireless power transmission can be applied to unmanned mobile charging through actual experiments.

The Technical Trend and Future Direction of Wireless Power Transmission (무선전력전송 기술동향과 발전방향)

  • Kim, S.M.;Moon, J.I.;Cho, I.K.;Yoon, J.H.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.3
    • /
    • pp.98-106
    • /
    • 2014
  • 무선전력전송(WPT: Wireless Power Transmission) 기술은 최근 개인 휴대기기에 대한 무선충전과 전기자동차 무선충전을 중심으로 비약적인 발전을 이루고 있는 기술이다. 또한 보다 높은 자유도와 안전성을 부여하기 위해 보다 먼 전송거리를 확보하고 다양한 이종기기에 동시에 전력을 공급할 수 있는 기술을 개발하기 위해 노력하고 있다. 이와 더불어 해당기술에 대한 독립적 지위를 확보하기 위한 다양한 표준화 활동이 동시에 진행되고 있다. 본고에서는 이러한 무선전력전송의 기술발전 동향과 표준화 동향을 소개하고, 향후 무선전력전송 기술의 발전방향에 대해 논하고자 한다.

  • PDF