• Title/Summary/Keyword: 무납 차폐체

Search Result 3, Processing Time 0.019 seconds

Development of Lead Free Shielding Material for Diagnostic Radiation Beams (의료영상용 방사선방호를 위한 무납차폐체 개발)

  • Choi, Tae-Jin;Oh, Young-Kee;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.232-237
    • /
    • 2010
  • The shielding materials designed for replacement of lead equivalent materials for lighter apron than that of lead in diagnostic photon beams. The absorption characteristics of elements were applied to investigate the lead free material for design the shielding materials through the 50 kVp to 110 kVp x-ray energy in interval of 20 kVp respectively. The idea focused to the effect of K-edge absorption of variable elements excluding the lead material for weight reduction. The designed shielding materials composited of Tin 34.1%, Antimon 33.8% and Iodine 26.8% and Polyisoprene 5.3% gram weight account for 84 percent of weight of lead equivalent of 0.5 mm thickness. The size of lead-free shielder was $200{\times}200{\times}1.5\;mm^3$ and $3.2\;g/cm^3$ of density which is equivalent to 0.42 mm of Pb. The lead equivalent of 0.5 mm thickness generally used for shielding apron of diagnostic X rays which is transmitted 0.1% for 50 kVp, 0.9% for 70 kVp and 3.2% for 90 kVp and 4.8% for 110 kVp in experimental measurements. The experiment of transmittance for lead-free shielder has showed 0.3% for 50 kVp, 0.6% for 70 kVp, 2.0% for 90 kVp and 4.2% for 110 kVp within ${\pm}0.1%$. respectively. Using the attenuation coefficient of experiments for 0.5 mm Pb equivalent of lead-free materials showed 0.1%. 0.3%, 1.0% and 2.4%, respectively. Furthermore, the transmittance of lead-free shielder for scatter rays has showed the 2.4% in operation energy of 50 kVp and 5.9% in energy of 110 kVp against 2.4% and 5.1% for standard lead thickness within ${\pm}0.2%$ discrepancy, respectively. In this experiment shows the designed lead-free shielder is very effective for reduction the apron weight in diagnostic radiation fields.

Development and Evaluation of Shielding with Mixed Iron- oxide-copper Filament using 3D printing (3D 프린팅 기술을 이용한 산화철-구리 혼합 필라멘트 차폐체 개발 및 차폐율 평가)

  • Nareoyng Shin;Seong-gwan Nam;JiSu Kang;GeonJu Lee;HuiMin Jang;Myeong-Seong Yoon;Dong-Kyoon Han
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.6
    • /
    • pp.651-662
    • /
    • 2024
  • This study developed a lead-free shielding material using a filament made from a mixture of iron oxide and copper to address the toxicity issues associated with lead-based shielding. After creating the filaments, various thicknesses of shielding materials were printed using a FDM 3D printer. Shielding performance and dose measurements were taken by varying the tube voltage and current with a diagnostic X-ray generator, and data analysis was performed using SPSS (p < 0.05). The results showed that the iron oxide-copper mixed filament shielding exhibited better performance than a 0.25 mmPb lead-equivalent protection tool at thicknesses of 8 mm or more, except for the conditions of 120 kVp and 20 mAs. This research demonstrates that the mixed filament shielding can mitigate the drawbacks of lead while providing comparable shielding effectiveness, suggesting its potential as foundational data for further studies on lead-free shielding materials.

A Study on Reduction of Radiation Exposure by Nuclear Medicine Radiation Workers (핵의학 방사선 작업종사자 피폭 감소 방안에 대한 연구)

  • Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.271-281
    • /
    • 2019
  • This study investigated the shielding efficiency of various types of shielding materials and measured the dose by organ using the phantom. Results of Shielding Efficiency Measurement Using Personal Radiation Meter. Among the various shielding materials, 1.1 mm RNS-TX composed of nano tungsten showed the highest shielding efficiency and 0.2 mm lead shielding showed the lowest shielding efficiency. 99mTc 30 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 20.53 mSv without radiation protective clothing, 8.75 mSv when wearing 0.25 mm Pb protective clothing, 6.03 mSv when wearing 0.5 mm Pb protective clothing. 131I 2 mCi mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 7.71 mSv without radiation protective clothing, 4.88 mSv when wearing 0.25 mm Pb protective clothing, 2.79 mSv when wearing 0.5 mm Pb protective clothing. 18F 5 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 16.39 mSv without radiation protective clothing, 15.84 mSv when wearing 0.25 mm Pb protective clothing, 12.52 mSv when wearing 0.5 mm Pb protective clothing. None of the radiation workers working in the nuclear medicine department exceeded the dose limit. However, when compared with other workers in the hospital, they showed a relatively high dose. Therefore, it is necessary to prepare measures to reduce and manage the dose of radiation workers in the nuclear medicine department through the wearing of radiation protective clothing made of lightweight, shielding material with good shielding efficiency, circulation task, task sharing, and substitution equipment such as auto dispenser.