DOI QR코드

DOI QR Code

Development and Evaluation of Shielding with Mixed Iron- oxide-copper Filament using 3D printing

3D 프린팅 기술을 이용한 산화철-구리 혼합 필라멘트 차폐체 개발 및 차폐율 평가

  • Nareoyng Shin (Department of Radiological Science, College of Helath Sciences, Eulji University) ;
  • Seong-gwan Nam (Department of Radiological Science, College of Helath Sciences, Eulji University) ;
  • JiSu Kang (Department of Radiological Science, College of Helath Sciences, Eulji University) ;
  • GeonJu Lee (Department of Radiological Science, College of Helath Sciences, Eulji University) ;
  • HuiMin Jang (Department of Radiological Science, College of Helath Sciences, Eulji University) ;
  • Myeong-Seong Yoon (Department of Radiological Science, College of Helath Sciences, Eulji University) ;
  • Dong-Kyoon Han (Department of Radiological Science, College of Helath Sciences, Eulji University)
  • 신나령 (을지대학교 보건과학대학 방사선학과) ;
  • 남성관 (을지대학교 보건과학대학 방사선학과) ;
  • 강지수 (을지대학교 보건과학대학 방사선학과) ;
  • 이건주 (을지대학교 보건과학대학 방사선학과) ;
  • 장희민 (을지대학교 보건과학대학 방사선학과) ;
  • 윤명성 (을지대학교 보건과학대학 방사선학과) ;
  • 한동균 (을지대학교 보건과학대학 방사선학과)
  • Received : 2024.11.04
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

This study developed a lead-free shielding material using a filament made from a mixture of iron oxide and copper to address the toxicity issues associated with lead-based shielding. After creating the filaments, various thicknesses of shielding materials were printed using a FDM 3D printer. Shielding performance and dose measurements were taken by varying the tube voltage and current with a diagnostic X-ray generator, and data analysis was performed using SPSS (p < 0.05). The results showed that the iron oxide-copper mixed filament shielding exhibited better performance than a 0.25 mmPb lead-equivalent protection tool at thicknesses of 8 mm or more, except for the conditions of 120 kVp and 20 mAs. This research demonstrates that the mixed filament shielding can mitigate the drawbacks of lead while providing comparable shielding effectiveness, suggesting its potential as foundational data for further studies on lead-free shielding materials.

본 연구는 납 기반 차폐체의 독성 문제를 해결하기 위해 산화철과 구리를 혼합한 필라멘트를 이용해 무납 차폐체를 개발하고 성능을 평가하였다. 산화철과 구리 파우더를 혼합하여 필라멘트를 제작한 후, FDM방식의 3D 프린터로 다양한 두께의 차폐체를 출력하였다. 관전압과 관전류를 변화하며 선량 및 차폐율을 측정하였으며, 데이터 분석은 SPSS 프로그램을 통해 이루어졌다(p<0.05). 실험 결과, 산화철 - 구리 혼합 필라멘트 차폐체는 관전압 120 kVp, 관전류 20 mAs 일 때를 제외한 모든 조건에서 8 mm 이상의 두께부터 납당량 0.25 mmPb 납 방호 도구보다 높은 차폐 성능을 나타냈다. 이 연구는 산화철 - 구리 혼합 필라멘트차폐체가 납의 단점을 보완하면서 유사한 차폐 성능을 제공할 수 있음을 입증하였으며 무납 차폐체 연구의 기초 자료로 활용될 수 있는 가능성을 제시하였다.

Keywords

Acknowledgement

이 연구는 2024년 을지대학교 대학혁신지원사업지원을 받아 진행한 연구임.

References

  1. J. Choi, "Prospects on the increase of radiological examinations in Korea", Journal of the Korean Medical Association, Vol. 63, No. 3, pp. 136-139, 2020. http://dx.doi.org/10.5124/jkma.2020.63.3.136
  2. J. S. Kim, "Analysis of breast shielding rate of bismuth shield", Journal of the Korea Institute of Information and Communication Engineering, Vol. 24, No. 9, pp. 1132-1137, 2020. http://dx.doi.org/10.6109/jkiice.2020.24.9.1132
  3. W. H. Lee, S. M. Ahn, "Evaluation of Reductive Effect of Exposure Dose by Using Air Gap Apron in Nuclear Medicine Related Work Environment", The Journal of the Korea Contents Association, Vol. 14, No. 12. pp. 845-853, 2014. http://dx.doi.org/10.5392/JKCA.2014.14.12.845
  4. H. H. Gang, D. H. Kim, "Study on Shielding using CT Contrast Medium", Journal of the Korean Society of Radiology, Vol. 12, No. 5, pp. 693-698, 2018. https://doi.org/10.7742/jksr.2018.12.5.693
  5. D. G. Eom, S. H. Kim, "3D Printing of Tungsten-Polymer Composites for Radiation Shielding", Journal of the Korean Society of Radiology, Vol. 14, No. 5, pp. 643-650, 2020. https://doi.org/10.7742/jksr.2020.14.5.643
  6. K. T. Kwon, H. M. Jang, M. S. Yoon, "Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy", Journal of the Korean Society of Radiology, Vol. 15, No. 7, pp. 965-973, 2021. https://doi.org/10.7742/jksr.2021.15.7.965
  7. D. S. Kim, T. H. Kim, M. S. Yoon, S. H. Kim, "Shielding Performance of PLA and Tungsten Mixture using Research Extruder", Journal of the Korean Society of Radiology, Vol. 17, No. 4, pp. 557-564, 2023. https://doi.org/10.7742/jksr.2023.17.4.557
  8. H. Lee, D. Kim, "Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology", Journal of the Korean Society of Radiology, Vol. 12, No. 7, pp. 909-917, 2018. http://dx.doi.org/10.7742/jksr.2018.12.7.909
  9. K. S. Park, W. J. Choi, D. H. Kim, "Evaluation of Metal Composite Filaments for 3D Printing", Journal of the Korean Society of Radiology, Vol. 15, No. 5, pp. 697-704, 2021. https://doi.org/10.7742/jksr.2021.15.5.697
  10. B. J. Choi, J. Y. Yang, M. G. Lee, Y. H. Jeon, "Defect analysis of metal 3D printing process", Journal of The Korean Society of Manufacturing Technology Engineers, Vol. 30, No. 1, pp. 92-98, 2021. https://doi.org/10.7735/ksmte.2021.30.1.92
  11. H. Lee, D. Kim, "Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology", Journal of the Korean Society of Radiology, Vol. 12, No. 7, pp. 909-917, 2018. http://dx.doi.org/10.7742/jksr.2018.12.7.909
  12. K. S. Park, D. H. Kim, "Evaluation of 3D printing filaments for radiation shielding using high density polyethylene and bismuth", Journal of the Korean Society of Radiology, Vol. 16, No. 3, pp. 233-240, 2022. http://dx.doi.org/10.7742/jksr.2022.16.3.233
  13. S. H. Han, B. Y. Koo, "Transmission Dose Measurement of Gamma-ray Using Tungsten Shield", Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 9, pp. 124-129, 2018. https://doi.org/10.5762/KAIS.2018.19.9.124
  14. Y. I. Cho, J. H. Kim, S. I. Bae, "Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-Energy Electron Radiation Therapy", Journal of the Korean Society of Radiology, Vol. 17 No. 5, pp. 641-649, 2023. https://doi.org/10.7742/jksr.2023.17.5.641
  15. H. H. Gang, D. H. Kim, "A Study on Barium Mixed Radiation Shield using 3D Printer", Journal of the Korean Society of Radiology, Vol. 14, No. 5, pp. 627-634, 2020. https://doi.org/10.7742/jksr.2020.14.5.627
  16. Gnanasekaran K, Heijmans T, van Bennekom S, Woldhuis H, Wijnia S, de With G, Friedrich H, "3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling", Applied Materials Today, Vol. 9, pp. 21-28, 2017. https://doi.org/10.1016/j.apmt.2017.04.003
  17. J. L. Choi, "Prospects on the increase of radiological examinations in Korea", Journal of the Korean Medical Association, Vol. 63, No. 3, pp. 136-139, 2020. http://dx.doi.org/10.5124/jkma.2020.63.3.136
  18. International commission on radiological protection, "Application of the Commission's Recommendations for the Protection of People in Emergency Exposure Si tuations", ICRP Publication 109, 2009.
  19. A. Martin, S. Harbison, K. Beach, R. Cole, An Int Roduction To Radiation Rotection, 6th Ed., CRC Press, FL, 2012.
  20. K. S. Park, D. H. Kim, "Evaluation of 3D printing filaments for radiation shielding using high density polyethylene and bismuth", Journal of the Korean Society of Radiology, Vol. 16, No. 3, pp. 233-240, 2022. https://doi.org/10.7742/jksr.2022.16.3.233
  21. G. Borkow, "Safety of Using Copper Oxide in Medical Devices and Consumer Products", Current Chemical Biology, Vol. 6, pp. 86-92, 2012. http://dx.doi.org/10.2174/187231312799984349
  22. M. Pourmadadi, E. Rahmani, A. Shamsabadipour, S. Mahtabian, M. Ahmadi, A. Rahdar, A. M. Diez-Pascual, "Role of Iron Oxide (Fe2O3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review", Nanomaterials (Basel, Switzerland), Vol. 12, No. 21, pp. 3873, 2022. http://dx.doi.org/10.3390/nano12213873