• Title/Summary/Keyword: 무게 최소화

Search Result 157, Processing Time 0.023 seconds

Responses to 1-MCP during Storage of Kimchi Cabbage Ryouckgwang Cultivar (배추 력광 품종의 저장 중 1-MCP에 대한 반응)

  • Hong, Sae Jin;Kim, Byung-Sup;Kim, Byeong-Sam;Eum, Hyang Lan
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • The effect of 1-methylcyclopropene (1-MCP) in the storability of kimchi cabbage at cold storage condition was investigated. Kimchi cabbage (Brassica campestris L. cv Ryouckgwang) was divided four groups, forced air cooling (FAC), FAC + 0.03 mm linear low density polyethylene liner (Liner), $FAC+2{\mu}L{\cdot}L^{-1}$ 1-MCP (1-MCP), and FAC + 1-MCP + Liner. After each treatment kimchi cabbage was stored at $2^{\circ}C$, 95% RH. Quality parameters were weight loss, soluble solids content (SSC), firmness, and color ($CIE\;L^*$, $a^*$, $b^*$, chroma, hue angle). Weight loss during storage was showed significant difference by Liner treatment. In particular FAC + 1-MCP + Liner treatment showed 12.5% reduction after 6 weeks of storage period and minimized the weight loss rate compared to other treatments. SSC of kimchi cabbage was $2.5^{\circ}Brix$ at harvest and FAC + 1-MCP + Liner treatment maintained the SSC until 3 weeks, while in other treatments gradually were increased. The firmness of kimchi cabbage was 24.0 N immediately after harvest and the firmness at harvest time tended to be maintained at 22.6 N after 6 weeks of storage in FAC + 1-MCP + Liner treatment. During the storage period, the color change of the kimchi cabbage leaf can be confirmed by $CIE\;a^*$ and hue angle value. 1-MCP treatment alone did not affect the color change, however 1-MCP + Liner treatment was able to maintain the chromaticity at harvest time while minimizing the change of $CIE\;a^*$ and hue angle. These results suggest that 1-MCP treatment is not effective for the storage of kimchi cabbage but can be maintained for up to 6 weeks when treated with Liner.

Effect of Adding Seawater on the Growth, Yield and Fruit Quality of Hydroponically Grown Tomato (Lycopersicon escuzentum Mill) (수경재배시 해수처리가 토마토 생육, 수량 및 품질에 미치는 영향)

  • 박용봉;김용덕
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.181-187
    • /
    • 2002
  • The overall objective of this study was to improve tomato fruit quality, while maximizing yield. The variety of 'Momotaro' was grown in the basic nutrient solution of 1.6 dS.m$^{[-10]}$ which was supplemented by three levels of seawater with EC 1.0, 2.0 or 3.0 dS.m$^{[-10]}$ . Tomato plants were cultivated in cool seasons. Plant growth characteristics were compared between treatments, and fruits were classified to analyse fruit quality characteristics according to ripening stages: MG, Br, Br+3, Br+5, Br+7 and Br+10. Adding seawater generally did not affect the shoot growth parameters such as plant height, leaf length, leaf width, internode length and chlorophyll content. Adding seawater negatively affected yield parameters such as the height and weight of fruit, marketable fruit weight per plant and marketable fruit yield. Therefore, the more yield reduction was obtained with the increasing level of seawater treatment. Fruit quality was improved by seawater treatment. The degree of the effect for $^{\circ}$Bx degree and sugars were the highest with the EC of seawater 2.0~3.0 dS.m$^{[-10]}$ , and at the Br+5~Br+7 of ripening stages. The relative abundance of tomato flavor, volatile components, was not generally affected by the seawater treatment with an exception of 6-methyl-5-hepten-2-one. The relative abundance of most volatile components increased as ripening progressed. The increment began at the Br stage and showed the highest increment at the Br+5~Br+7 stages. The results from these experiments suggest that seawater treatment of EC 3.6 dS.m$^{[-10]}$ for hydroponics is good for improving tomato quality. Fruit quality is the best at the Br+5~Br+7 ripening stages. It is considered that these results may be applied far use in hydroponic culture to improve fruit quality with minimum yield reduction.

EFFECT OF CANAL PREPARATION METHODS ON THE APICAL EXTRUSION OF DEBRIS (근관형성법이 근관잔Δ사의 치근단 정출에 미치는 영향)

  • Park, Ju-Myong;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.399-407
    • /
    • 1999
  • Apical extrusion of canal debris is occurred inadvertently during root canal preparation and this could produce interappointment discomfort or postinstrumentation pain. The purpose of this study was to investigate the influence of canal preparation methods on the apical extrusion of canal debris by means of comparing the amounts of apically extruded debris with several kinds of instrumentation methods. In the first experiment, 40 incisors were divided into four groups of 10 each. They were instrumented using one of the four techniques: Step-back, crown-down pressureless technique with stainless steel K-files, engine-driven instrumentation with Quantec series 2000, and Profile .04 taper series 29. Root canal irrigation was done with 2.52% sodium hypochlorite solution. In the second experiment, 80 incisors were divided into five groups of 16 each and instrumented using step-back, crown-down pressureless technique with stainless steel K-files, engine-driven instrumentation such as Quantec SC, Quantec LX, and Profile .04 taper series 29 No irrigation procedure was performed in this second experiment. Extruded debris from each tooth was collected in a container and weighed by the use of an electronic balance after desiccation. With or without canal irrigation, step-back technique produced significantly more amount of apical debris than the other groups (p<0.05). However, there was no significant difference among crown-down pressureless technique, engine-driven instrumentation with Quantec LX, Quantec SC, or Profile. Therefore, either by hand or engine-driven instrumentation, it is concluded that to minimize apical debris, techniques using reaming motion of files should be applied rather than filing motion.

  • PDF

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

Cellulosic Ethanol Production (셀룰로식 (Cellulosic) 에탄올 생산)

  • Chung, Chang-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • The world demand of ethanol as an alternative fuel for gasoline is increasing rapidly because of high oil price and global climate change. Most of ethanol is currently produced from corn grain or sugars in sugarcane and sugar beet. Because these sources compete with foods and animal feed and are not expected to be enough for future demand of ethanol. Thus, cellulosic ethanol from agricultural residues or wood has to be commercialized in near future. Typical cellulosic ethanol production consists of pretreatment, enzyme hydrolysis, fermentation and product separation. This paper reviews the principles and status of each step and discusses issues for cellulosic ethanol production.

Quantifying Uncertainty of Calcium Determination in Infant Formula by AAS and ICP-AES (AAS 및 ICP-AES에 의한 조제분유 중 칼슘 함량 분석의 측정불확도 산정)

  • Jun, Jang-Young;Kwak, Byung-Man;Ahn, Jang-Hyuk;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.701-710
    • /
    • 2004
  • Uncertainty was quantified to evaluate calcium determination result in infant formula with AAS (Atomic Absorption Spectrometry) and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Uncertainty sources in measurand, such as sample weight, final volume of sample, sample dilution and the instrumental result were identified and used as parameters for combined standard uncertainty based on the GUM (Guide to the expression of uncertainty in measurement) and Draft EURACHEM/CITAC Guide. Uncertainty components of each sources in measurand were identified as resolution, reproducibility and stability of chemical balance, standard material purity, standard material molecular weight, standard solution concentration, standard solution dilution factor, sample dilution factor, calibration curve, recovery, instrumental precision, reproducibility, and stability, Each uncertainty components were evaluated by uncertainty types and included to calculate combined uncertainty. The kinds of uncertainty sources and components in the analytical method by AAS and ICP-AES were same except sample dilution factor for AAS. The analytical results and combined standard uncertainties of calcium content were estimated within the certification range $(367{\pm}20\;mg/100g)$ of CRM (Certified Reference Material) and were not significantly different between method by AAS followed by ashing and method by ICP-AES followed by acid digestion as $359.52{\pm}23.61\;mg/100g\;and\;354.75{\pm}16.16\;mg/100g$, respectively. Identifying uncertainty sources related with precision, repeatability, stability, and maintaining proper instrumental conditions as well as personal proficiency was needed to reduce analytical error.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.