• Title/Summary/Keyword: 몰수체

Search Result 54, Processing Time 0.031 seconds

NACA단면의 끝단 와방출에 대한 연구

  • Lee, Chang-U;O, U-Jun;Son, Chang-Bae;Kim, Ok-Seok;Lee, Gyeong-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.48-49
    • /
    • 2010
  • 선박의 러더하부 끝단에서는 선회에 따른 와류로 인하여 선회력 및 후류유동에 변화를 초래한다. 이를 관측하기 위해 NACA단면 형상의 몰수체를 영각과 관측단면을 변화시키며 $Re=2.0{\times}10^4$에서 실험을 통한 순간유동장을 계측 후 그 영향을 조사하였다. 계측된 결과는 상호상관 PIV기법을 이용 Naca단면 끝단에서의 2차원 유동특성을 알아보기 위하여 상호 비교하였다. NACA단면은 영각변화에 따라 후류유동에 영향을 미친다. 동일유입유속에서 영각이 증가함에 따라 관찰단면이 중앙으로 갈수록 와류 규모가 확대되는 것을 관찰할 수 있었다.

  • PDF

$H^{\inf}$ controller design for submerged vehicle under model uncertainty and sea wave disturbances (모델 불확실성과 해파외란을 고려한 고려한 몰수체의 $H^{\inf}$ 제어기 설계)

  • 이재명;류동기;이갑래;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.17-26
    • /
    • 1996
  • A submerged vehicle which is a nonlinear multivariable system must be designed to be roubst against inner-outer perturbations and hydrodynamic disturbances induces maneuvering operation. But a practical design of motion controller is limited by both mathematical modeling error and linearization errors. Performance of a motion controller based on traditional design method is very poor when the vehicle motion is under wave force distrubacnes near sea surface. Therefore, this ppaer proposes a design method of $^{\infty}$ controller under model uncertainty and sea wave disturbances. performance of the controllers by both computer simulation and HILS (hardwave in the loop simulation) shows that $H^{\infty}$ controller is more robust than PID controller under model uncertainty and high sea state...

  • PDF

The Forecd Vibration Analysis using Transfer Matrix(I) : Immersed Infinite Circular Cylindrical Shell (전달 행렬을 이용한 진동 및 방사소음 해석 (I) : 무한 원통형 몰수체)

  • 정우진;신구균;전재진;이헌곤
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.443-449
    • /
    • 1994
  • In the analysis of circular cylindrical shell's vibration and sound radiation, there are numerical and analytical methods. Numerical methods such as F.E.M and B.E.M, have the limit of frequency range. Analytical method can be applied to the circular cylindrical shell from low frequency to high frequency. In this paper, we use the analytical method for shell, and numerical method, F.D.M, for fluid. We also use the method using transfer matrix and eigenanalysis of transfer matrix which can therefore calculate the rotational d.o.f that is very imkportant in synthesis with inner structure. Inner structure has much effect on the submerged circular cylindrical shell vibration and sound rediation. Results for the immersed circular cylindrical shell vibration and sound radiation are compared with the analytic solutions.

  • PDF

A Practical Method for Computing Wave Resistance (조파저항 계산을 위한 실용적인 방법)

  • Seung-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.111-120
    • /
    • 1994
  • This is a continuing work of Van & Lee[1]. Some unresolved results of theirs are first discussed more, and then Tulis's[2] exact theory is briefly reviewed. A second order theory derived from Tulin's is used as a basis to judge the accuracy of the Poisson and the Dawson[3] free surface boundary condition(FSBC) in the low speed region for a two-dimensional submerged body. In search of a new FSBC, a purely numerical approach is adopted, and we show one candidate and its performance, which is satisfactory to a certain degree.

  • PDF

Numerical Analysis of Cavitating Flow around Two-dimensional Wedge-shaped Submerged Bodies under the Wall Effect (벽면효과를 받는 2차원 쐐기형 몰수체의 공동 유동에 대한 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • In practice, cavitation phenomena occur in unbounded flows. However, the wall effect is unavoidable during experiments at a closed section such as a cavitation tunnel. Especially, supercavity generated behind a cavitator is relatively large and thick, so that geometric and dynamic characteristics of the cavity are affected by the tunnel wall. In order to apply experimental results into the unbounded flow field, physical correlations are necessary. In this paper, we proposed an image method based on a potential flow to simulate the wall effect. Considering two-dimensional wedge-shaped bodies, configurations and drag characteristics of the cavity were examined according to the distance ratio to the wall surface. The results were compared and verified with existing theoretical and experimental results.

Parameter Identifications of Roll Maneuvering Coefficients Based on Sea Trial Data (해상 실측 자료를 이용한 횡동요 조종 계수 식별)

  • C.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.29-37
    • /
    • 1998
  • Linear equations of motion for submersibles are one of the rest important design parameters, which are used as a governing equation for the shape design and the controller design. But, the estimated maneuvering coefficients in equations of motion by using empirical formulae, theoretical calculations or model tests might have some errors. Therefore the maneuvering coefficients should be verified from sea trial test. In this study, parallel extended Kalman filter method, Nelder & Mead Simplex method and genetic algorithm were applied to the parameter identification of roll maneuvering coefficients based on sea trial data. As a result, it was verified that Nelder & Mead Simplex method gave the most satisfactory results for the mathmatical models and the sea trial data used in this study.

  • PDF

Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water (수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실)

  • Lee, Keunhwa;Lee, Cheolwon;Park, Cheolsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Acoustic radiation from a submerged elastic shell with an internal fluid surrounded by the bubble layer is studied with the modal theory. An omni-directional point source located on the center of the internal fluid is used as acoustic noise source. The unknown coefficients of modal solutions are solved using the interface conditions between media. To preserve the stability of the modal solution over wide frequency ranges, the scaled technique of modal solution is used. The bubble layer is modeled with four kinds of bubble distribution; uni-modal distribution, uniform distribution, normal distribution, and power-law distribution, based on the effective medium theory of Commander and Prosperetti. For each bubble distribution, the insertion losses are mainly calculated for the frequency. In addition, the numerical simulations are performed depending in the bubble void fraction, the material property of elastic shell, and the gap between the bubble layer and the elastic shell.

Characteristics of Acoustic Impulse Response of Submerged Cylindrical Objects as Elements of Target-Scattered Echo (표적신호 시뮬레이션 요소로서 원통형 몰수체의 충격응답의 특성)

  • Kim, Jae-Soo;Seong, Nak-Jin;Lee, Sang-Young;Kim, Kang;Yu, Myong-Jong;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.5-13
    • /
    • 1994
  • Simulation of the target-scattered echo requires the understanding of scattering mechanism at the highlight points. In this paper, the basic assumption of Highlight Model is reviewed through the analyzed data obtained in the acoustic water tank experiment. The analysis shows that the scattering mechanism involves pulse elongation and frequency shift as elements of target-scattered echo, and that the internal structures affect the temporal response of the target-scattered echo significantly. The band-limited impulse response or Green's function due to the diffraction from highlight points of internal structures is not mere delta function, but acts like a filter, which causes frequency shift and is elongated in time.

  • PDF

Numerical Analysis of Supercavitation according to Shape Change of the Two-dimensional Submerged Body (2차원 몰수체의 형상 변화에 따른 초월공동 수치해석)

  • Park, Hyun-Ji;Kim, Ji-Hye;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A cavitator plays an important role to generate the supercavity. Most previous numerical and experimental studies have been focused on the presence of cavitators alone. However, the body behind the cavitator causes a change in the wake flow and hence it affects generation and growth of the supercavity. In this paper, we present a boundary elementary method based on a potential flow analysis, and calculate characteristics of the supercavity formation depending on the change of the body shape of two-dimensional submerged objects. Various parameters such as cone angle of the cavitator, length of the forehead and diameter of the body are considered. The results show that the longer the forepart length, the longer the cavity is created under the same conditions, and also the change in the diameter of the body is the most influential factor on the growth of the supercavity. As a result, we suggest that it is necessary to carefully consider the influence of the body shape during the initial design stage of the supercavitating underwater vehicle.