• Title/Summary/Keyword: 몬테카를로 모사

Search Result 99, Processing Time 0.02 seconds

연잎 효과를 모방한 초발수 표면 연구- 전산모사 해석을 통한 최적의 초발수 표면 도출

  • Choe, Se-Yong;An, Seong-Bae;Kim, Hyo-Jeong;Jang, Jun-Gyeong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.67-74
    • /
    • 2016
  • 초발수 표면은 표면이 젖지 않으면서 물방울이 자유롭게 움직일 수 있는 표면을 말한다. 이는 자연에서 많이 관찰되며 예를 들면 연잎, 나비와 곤충의 다리가 대표적이다. 일반적으로 초발수 표면은 물방울과 접촉할 때 이루는 각이 $150^{\circ}$보다 크며, 표면을 $5^{\circ}$정도 기울이면 물방울이 굴러가기 시작한다. 특히 연잎 표면을 자세히 보면 마이크로/나노단위의 미세한 돌기가 표면 위에 존재한다. 이러한 연잎 표면의 구조에 따른 특성을 모방하여 표면 위에 인위적으로 다양한 모양, 크기의 돌기를 만들어 표면의 초발수 특성을 향상시키는 연구가 활발히 이루어지고 있다. 연구가 다양하고 광범위하게 진행되면서, 학문적인 원인 분석 외에도 산업에서의 활용가능성이 주목받고 있다. 이에 따라 이 논문은 전산모사 방법을 사용하여 표면 돌기와 관련된 다양한 변수(돌기의 모양, 높이, 너비, 돌기 사이의 간격, 표면과 물 분자 간의 에너지)에 따라 표면의 초발수 특성이 어떻게 변하는지 연구해보고, 초발수 현상의 특징과 그 발생 원인을 이해하는데 목적을 두며 이러한 연구결과는 실제 산업현장에서 최적의 초발수 표면을 제작하는데 도움을 줄 것이다.

  • PDF

Computer aided simulation of spark plasma sintering process (Part 2 : analysis) (스파크 플라스마 소결공정의 전산모사(2부 : 해석))

  • Keum Y.T.;Jung S.C.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • In this Part 2, the grain growth processes of $Al_2O_3$ ceramics is numerically simulated using Monte Carlo method (MCM) and finite element method (FEM) and the pore sizes are analyzed. As the green ceramics whose thermal conductivities in high temperatures are generally low are sintered by the plasma heat and are rapidly cooled, the grain growth of the sintered body in the center is different from that in the outer. Also, even in the same sintering temperature, the pore size differs according to the pressing pressure. In order to prove the difference, the temperature distribution of the sintered body was analyzed using the finite element method and then the grain growth process associated with pressing pressures and relative densities was simulated using Monte Carlo method.

Usefulness of New GAGG Scintillation Detector for Gamma Camera : A Monte Carlo Simulation Study (GAGG 섬광체 물질을 적용한 감마카메라 영상의 유용성 평가: 몬테카를로 시뮬레이션 연구)

  • Kim, Jung-Soo;Park, Chan Rok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.511-515
    • /
    • 2020
  • In this study, we evaluated image quality for new Gadolinium Aluminum Gallium Garnet (GAGG) scintillation material based on the Geant4 Application for Tomographic Emission (GATE) simulation tool. The gamma camera detectors with GAGG and NaI scintillation were designed. In particular, we modeled modified body phantom by National Electrical Manufacturers Association International Electrotechnical Commission to evaluate the simulated images. To analysis the image performance, the contrast to noise ratio (CNR) and coefficient of variation (COV) were used by drawn the region of interests, respectively. Based on the CNR and COV results, the CNR value for GAGG material is higher approximately 17 % than NaI material. In addition, the COV value for GAGG material is lower approximately 17 % than NaI material. In conclusion, we confirmed the performnace of GAGG based gamma camera is useful to improve the image quality for the nuclear medicine instrumentation.

An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine (몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Junghoon;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • Workers in nuclear medicine have performed various tasks such as production, distribution, preparation and injection of radioisotope. This process could cause high radiation exposure to wokers' hand. The purpose of this study was to investigate shielding effect for r-rays of 140 and 511 keV by using Monte-carlo simulation. As a result, it was effective, regardless of lead thickness for radiation shielding in 140 keV r-ray. However, it was effective in shielding material with thickness of more than only 1.1 mm in 511keV r-ray. And also it doesn't effective in less than 1.1 mm due to secondary scatter ray and exposure dose was rather increased. Consequently, energy of radionuclide and thickness of shielding materials should be considered to reduce radiation exposure.

Evaluation of Stability using Monte Carlo Simulation in 2 People Isolation Treatment Room of Radiation Iodine (몬테카를로 모의 모사를 이용한 방사성옥소 2인 치료병실의 안전성 평가)

  • Jang, Dong-Gun;Ko, Sung-Jin;Kim, Chang-Soo;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.385-390
    • /
    • 2016
  • Radioactive iodine treatment that uses the 2 people isolation room is to cause unnecessary radiation exposure between patients. This research is to be tested safety of 2 people Isolation treatment room and dose-rate through conservative perspective except physiology characteristic and biology information on the assumption that patient have iodine without excretion in 2 people isolation treatment room. This research shows that 364 keV gamma rays emitted by the radioiodine was to determine that the air layer about 30 cm or lead shield 3 mm a half-layer. In addition, In addition, patients in the distance, and lead shielding, length of hospital stay (48 hours) for external radiation exposure that is received from the other patients, two of treatment as appears to be lower than the legal isolation standard dose less than 5 mSv isolation room effective analyzed that manageable.

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.

Monte Carlo Simulation of Transmission-Type X-ray Tube with Dual-Structured Target (이중 적층 구조 표적을 갖는 투과형 엑스선관의 몬테카를로 전산모사)

  • Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • X-ray fluorescence analysis has been widely used in the field of science and industry because it gives information about elements and their concentrations without destruction of samples. To increase analysis accuracy of fluorescence generated by photons of the transmission-type X-ray tube for mixture and compound samples would be recommend to have strong energy near 10 keV and 20 keV simultaneously. Tungsten of 9.65 keV and molybdenum of 17.48 keV were considered as targets with dual deposition structure for obtaining two strong characteristic X-rays, and the transmission-type X-ray tube was analyzed using Geant4 Monte Carlo simulation. The W-Mo structure resulted in strong characteristic X-ray near 10 keV and 20 keV simultaneously. A structure with Mo-W multilayers of 5 ㎛ thick also gave optimal spectrum. Various material combination and thickness optimization for the dual-structured target can give X-ray spectrum with strong characteristic X-ray of specific energies.

Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method (직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측)

  • Shin, Somin;Na, Kyung-Su;Lee, Juyoung;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.616-621
    • /
    • 2014
  • Consumption of the fuel on the satellite operating in low earth orbit, is increased due to the air resistance and the amount of increase makes the satellite lifetime decrease or the satellite mass risen. Therefore the prediction of drag force of the satellite is important. In the paper, drag force and drag coefficient analysis of the parabolic antenna satellite in low earth orbit using direct simulation monte carlo method (DSMC) is conducted according to the mission altitude and angle of attack. To verify the DSMC simulated rarefied air movement, Starshine satellite drag coefficient according to the altitude and gas-surface interaction are compared with the flight data. Finally, from the analysis results, it leads to appropriate satellite drag coefficient for orbit lifetime calculation.

Stress Analysis of Single-Lap Adhesive Joints Considering Uncertain Material Properties (물성치의 불확실성을 고려한 단일 겹치기 이음의 응력해석)

  • 김태욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.401-406
    • /
    • 2003
  • This paper deals with stress analysis of single-lap adhesive joints which have uncertain material properties. Basically, material properties have a certain amount of scatter and such uncertainties can affect the performance of joints. In this paper, the convex modeling is introduced to consider such uncertainties in calculating peel and shear stress of adhesive joints and the results are compared with those from the Monte Carlo simulation. Numerical results show that stresses increase when uncertainties considered, which indicates that such uncertainties should not be ignored for estimation of structural safety. Also, the results obtained by the convex modeling and the Monte Carlo simulation show good agreement, which demonstrates the effectiveness of convex modeling.