• Title/Summary/Keyword: 목질 섬유

Search Result 76, Processing Time 0.031 seconds

Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard (목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong;Oh, Seung Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of $E_1$ grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.

Improvement of Bending Stiffness in White Duplex Board by Utilization of Wood Fibers from Medium Density Fiberboard (2) Ozone treatment (백판지의 휨강성 증대를 위한 목질섬유의 이용 (2) 오존처리)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers were treated with ozone (3% based on dry weight of the fibers), and mixed together with OCC (old corrugated container) to form paper. Ozone-treated MDF fibers gave high bulk, high tensile strength, high internal bond and fast drainage to the furnish mixed with OCC. It was shown that there were possibilities to reduced basis weight of the filler layer without loss of thickness, stiffness, and tensile strength. Furthermore, it showed the possibility to develop a new kind of board product that has high stiffness as well as high strength properties with light basis weight by application of the ozone-treated MDF fibers.

Evaluation of morphological properties and papermaking properties of corn biomass (목질섬유 대체를 위한 옥수수 바이오매스의 형태적 특성 및 초지 특성 평가)

  • Sung, Yong-Joo;Kim, Wan-Jung;Kim, Dong-Seop;Seo, Yung-Bum;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • Corn stalk, one of the most abundant agricultural residue in the world, was examined in this study to use it as an alternative fiber source of wood fiber. In order to find the proper way to utilize corn stalk more efficiently, the morphological properties and the papermaking properties of the, bast fibers and the corn pith, were evaluated respectively. Although the bast fiber fraction showed comparable properties to those for hardwoods in the fiber properties and the papermaking properties, the pith resulted in low brightness and low drainage rate. But the short and flexible fibers in pith fraction led to dense and compact handsheet structure, correspondingly the higher sheet strength. There big differences in properties between bast fiber and pith should be considered for the fully utilization of corn stalk.

The Characteristics of Alkaline Pretreatment Methods of Cellulosic Biomass (섬유소계 바이오매스의 분별을 위한 다양한 알칼리 전처리 특성)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.303-307
    • /
    • 2013
  • This study compares the efficacy of soaking and percolation pretreatments with alkaline solutions for lignocellulosic biomass. Various biomass such as rice straw and barley were pretreated by soaking processes in various alkaline solutions including sodium hydroxide, potassium hydroxide, aqueous ammonia and sodium carbonate. The enzymatic digestibility of rice straw and barley that had been pretreated by soaking in aqueous ammonia was over 80%. Eucalyptus residue, Larix leptolepis and Pinus rigida exhibited relatively low enzymatic digestibility. Nevertheless, the enzymatic digestibility of pretreated eucalyptus residue was increased by five times compared to that of the initial biomass. And, the enzymatic digestibility of the percolation pretreated eucalyptus residue was increased 12 times.

The Enzymatic Hydrolysis of Exploded Woody Biomass(I) -Effects of Lignin Contents and Cellulose Crystallinity on the Enzymatic Hydrolysis- (폭쇄처리(爆碎處理)된 목질계(木質系) Biomass의 산소가수분해(酸素加水分解)(I) -리그닌의 함량(含量)과 섬유소(纖維素)의 결정화도(結晶化度)가 산소가수분해(酸素加水分解)에 미치는 영향)

  • Park, Young-Ki;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.53-60
    • /
    • 1993
  • Substrates used were hardwood-Suwon poplar-(Populus alba${\times}$glandulosa L.) and softwood-pitch pine-(Pinus rigida M.). And these substrates were steam exploded then treated with sodium chlorite at 75$^{\circ}C$ with occasional stirring in order to obtain samples which had different lignin contents and crystallinity. And then this resulting samples incubated with a commercial cellulase derived from Trichoderma ressei. The contents of Klason lignin were decreased as the increasing of the ratio of sodium chlorite in the two species. The effect of hardwood was more effective than that of softwood in the same ratio of sodium chlorite. The minimum contents of Klason lignin were 0.8% and 5.1% respectively. And the crystallinities of cellulose were increased very little as increasing of the ratio of sodium clorite. The hydrolysis extent of the two species were increased as the increasing of delignification. Especially, the hydrolysis extent of hardwood was more higher than that of softwood. The maximum hydrolysis extent were 89.8% and 71.1%, respectively.

  • PDF

Reaction Mechanism and Curing Characteristics of Chicken Feather-Based Adhesives and Adhesive Properties of Medium-Density Fiberboard Bonded with the Adhesive Resins (닭털로 제조한 접착제의 반응기작 및 경화 특성과 이를 이용하여 제조한 중밀도섬유판의 접착 특성)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.385-394
    • /
    • 2017
  • In this study, reaction mechanism and curing characteristics of adhesives formulated with NaOH- and $H_2SO_4$-hydrolyzed chicken feather (CF) and formaldehyde-based crosslinkers were investigated by FT-IR and DSC. In addition, adhesive properties and formaldehyde emission of medium-density fiberboards (MDF) applied with the adhesives were measured. CF-based adhesives having a solid content of 40% and over were very viscous at $25^{\circ}C$, but the viscosity reduced to $300{\sim}660m{\cdot}Pa{\cdot}s$ at $50^{\circ}C$. Consequently, the adhesives could be used as a sprayable resin. Through the FT-IR spectra of liquid and cured CF-based adhesives, addition reaction of methylol group and condensation reaction between the functional groups with the use of formaldehyde-based crosslinkers were identified. From the analysis of DSC, it was elucidated for CF-based adhesives to require a higher pressing temperature or longer pressing time comparing to commercial urea-formaldehyde (C-UF) resin. MDF bonded with CF-based adhesives, which was formulated with 5% NaOH-hydrolyzed CF (CF-AK-5%) and PF of formaldehyde to phenol mole ratio of 2.5 (PF-2.5), and pressed for 8 min had higher MOR and IB than those with other CF-based adhesives. MOR and IB of MDF bonded with the CF-based adhesives regardless of formulation type and pressing time were higher than those with C-UF resin. When the values compared with the minimum requirements of KS standard, IB exceeded the KS standard in all formulations and pressing time, but MOR of only MDF bonded with CF-AK-5% and PF-2.5 and pressed for 8 min satisfied the KS standard. What was worse, 24-TS of MDF bonded with all CF-based adhesives did not satisfied the KS standard. However, MOR and 24-TS can be improved by increasing the target density of MDF or the amount of wax emulsion, which is added to improve the water resistance of MDF. Importantly, the use of CF-based adhesives decreased greatly the formaldehyde emission. Based on the results, we reached the conclusion that CF-based adhesives formulated under proper conditions had a potential as a sprayable resin for the production of wood panels.

Thermo-chemical Conversion of Poplar Wood (Populus alba × glandulosa) to Monomeric Sugars by Supercritical Water Treatment (초임계수에 의한 현사시나무의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Han, Kyu-Sung;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.44-50
    • /
    • 2006
  • To characterize thermo-chemical feature of su gar conversion of woody biomass poplar wood (Populus alba${\times}$glandulosa ) by sub- and supercritical water was treated for 60s under subcritical (23 MPa, 325 and $350^{\circ}C$) and supercritical (23 MPa, 380, 400, and $425^{\circ}C$) conditions, respectively. Among degradation products undegraded poplar wood solids existed in aqueous products. As the treatment temperature increased, the degradation of poplar wood was enhanced and reached up to 83.1% at $425^{\circ}C$. The monomeric sugars derived from fibers of poplar wood by sub- and supercritical treatment were analyzed by high performance anionic exchange chromatography (HPAEC). Under the subcritical temperature ranges, xylan, main hemicellulose component in poplar wood, was preferentially degraded to xylose, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical condition. The highest yield of monomeric sugars amounts to ca. 7.3% based on air dried wood weight (MC 10%) at $425^{\circ}C$.

Changes of Adsorption Properties of Woody Charcoals Prepared by Different Carbonizing Temperature (탄화온도 차이에 의한 목질탄화물의 흡착성 변화)

  • Jo, Tae-Su;Ahn, Byoung-Jun;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.45-52
    • /
    • 2005
  • This research was performed to evaluate adsorption behavior of woody charcoals obtained from wood powder, fiber and bark of spruce (Abies sibirica Ledeb). The wood materials were carbonized at various temperatures for 1 hour using experimental rotary kiln without any inert gas. The adsorption capacity of iodine and toluene, specific surface area and removal efficiency of acetic acid and ammonia gas of those charcoals were measured. The higher was the temperature for carbonization, the lower yields of charcoals were. Ash content of bark charcoal was higher than that of wood powder charcoal or fiber charcoal. Elemental analysis of woody charcoal revealed that the content of carbon was gradually lincreased as carbonization temperature was higher. When carbonization temperature was higher, adsorption capacity of woody charcoals for iodine was much improved. Wood powder charcoal and fiber charcoal were more effective for iodine adsorption rather than bark charcoal. Capacity of toluene adsorption was the highest in the charcoal of $600^{\circ}C$. Charcoals produced at high temperature efficiently removed acetic acid gas, while charcoals carbonized at low temperature such as $400^{\circ}C$ were proper to remove ammonia gas. This difference may be explained that the acidity of charcoals depends on the carbonization temperature: charcoals of low temperature indicate acidic property, while those of high temperature turned to alkaline.

Anatomical Characteristics of Kenaf Cultivated in Korea (국내에서 생장한 Kenaf의 해부학적 특성)

  • Kwon, Young-Man;Hwang, Won-Joong;Kwon, Sung-Min;Jo, Jun-Hyung;Lee, Myoung-Ku;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2005
  • Anatomical properties of kenaf cultivated in Korea was investigated using light microscopy. Bast fiber, phloem ray and cortex parenchyma cell were observed in bast, and vessel, wood fiber and ray in core. A lot of solitary and multiple radial pores in core existed. The cell type of ray parenchyma in radial section was procumbent, upright and square cells. Uniseriate and multiseriate rays existed in tangential section. The layer of bast fiber in bast increased with increasing the growth period.

  • PDF

Studies on Adhesion of Fancy Veneer and Formaldehyde Emission of Wood-Based Floorings by Mole Ratios of Urea and Melamine (요소·멜라민 접착제의 수지 조성에 따른 마루판의 천연무늬단판 접착성 및 포름알데히드 방출에 대한 연구)

  • Kang, Eun-Chang;Park, Jong-Young;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • This study was to investigate the adhesion properties of fancy veneer and base panels and formaldehyde emission of wood-based floorings bonded with urea-melamine formaldehyde adhesives. We focused on stoichiometric mole ratio of reactive functional groups. The urea-melamine formaldehyde adhesives were made at twelve different formaldehyde/urea-melamine mole ratios. The interlaminated shear strength and formaldehyde emission of wood-based floorings bonded with selected adhesive among these adhesives were examined. The results showed that the bonding properties were high and the formaldehyde emission was low as the adhesive consisted of stoichiometric mole ratio of formaldehyde/urea-melamine. Interlaminated shear strengths of HDF(High Density Fiberboard) flooring were over 14 kgf/cm2 at all mole ratios. At the mole ratio of 1.0, HDF flooring showed low value of formaldehyde emission of 953 mg/L. Interlaminated shear strengths of Plywood flooring were high, 14.02 kgf/cm2 at mole ratio of 1.4. At the mole ratio of 1.0, Plywood flooring showed low value of formaldehyde emission of 0.26 mg/L.