• Title/Summary/Keyword: 목질

Search Result 571, Processing Time 0.027 seconds

A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-286
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant raw material for bioconversion in many country. However the high costs for pretreatment and enzymatic hydrolysis currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into intermediates that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of pretreatment with lignocellulosic biomass in bioethanol production process.

Effect of Carbonized Wastewoods on Purification of Wastewater (목질폐잔재 탄화물의 수질정화 효과)

  • Lee, Dong-Wook;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 2002
  • This study examined the effect of carbonized wastewoods on purification of waste water. The purification ability of charcoals(lump-shaped, approximately 3×3×3 cm) maded by wood-based material for waste water from a kitchen and septic tank was superior to those of thinned wood. For lump-shaped charcoal, gaps between particles in particleboard, and gaps between fibers in MDF were much more effective than micropore in purification of waste water. After purification test, color of waste water from wood-based material charcoals were much more lighter than thinned wood charcoals. In addition, odors of waste water from both charcoals tended to be decreased.

Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass (목질계 바이오연료 생산을 위한 산업화 기술 및 전망)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.622-628
    • /
    • 2016
  • This study investigated to understand the trend of international commercializing technologies and industrial status of the transportation biofuel based on lignocellulosic biomass. Two major commercializing technologies for the lignocellulosic biofuel are biochemical conversion technology and thermochemical conversion technology. It was reported that a total of 93 industrial companies were using lignocellulosic biomass of all facilities related to advanced biofuel. On the basis of commercial type, the biochemical conversion technology was identified to be the major technology in the lignocellulosic biofuel industries, showing 84% of all. Also the main products of commercial type industrial companies are bioethanol (1,155,000 tons/yr) and bio-oil (120,000 tons/yr), which are in a remarkably inadequate amount to substitute for the transportation biofuel worldwide. It was suggested that the transportation biofuel market was currently in need of further development in both technology and scale, and was in high demands of technological development and commercializing exertion.

Improvement of Sound Absorption Capability of Wood and wood-based Board by Resonant Absorption (공명흡음에 의한 목재와 목질보드의 흡음성능개선)

  • Kang, Chun-Won;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Improvement of sound absorption capability of wood and wood-based board by resonant absorption was attempted. Sound absorption coefficients of wood and wood-based board which contain normal, simple perforation and stair type perforation had been estimated by the tube method using standing wave ratio. Sound absorption coefficients of wood specimens of simply perforated and perforated with stair were higher than that of normal specimens. Especially, in case of stair type perforation, it was about 50 to 60% higher than that of normal specimen in the frequency of 3 to 4KHz. It was considered that the cavity which had been formed by perforation with stair type behaved as a single resonator. Wood-based board showed good sound absorption coefficients in the frequency from 125Hz to 2KHz and that of perforated board showed a little higher in the frequency from 300Hz to 500Hz than that of normal board. The computed data of resonant frequencies at several sizes of cavity showed good accordance with the estimated data of those.

  • PDF

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry (열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Chun, Sang-Jin;Choi, Don-Ha;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

Effect of torrefaction on enzymatic saccharification of lignocellulosic biomass (목질계 바이오매스의 효소당화에서 반탄화 전처리 영향)

  • Choi, Hyoyeon;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • This study is to investigate the effect of torrefaction on enzymatic hydrolysis of lignocellulosic biomass for bio-ethanol production. As a pretreatment, the torrefaction of lignocellulosic biomass was conducted in temperature of $250{\sim}350^{\circ}C$ in the absence of oxygen. Tween-80, nonionic surfactant, was tested to enhance saccharification efficiency by coping with hydrophobicity resulted from torrefaction. As a result, the glucose production from enzymatic hydrolysis of biomass pretreated by torrefaction was greater than that obtained from the non-pretreated biomass. Sugar conversion was higher when the biomass was saccharified with addition of tween-80. It was found that torrefaction can be applied as a preptreatment for lignocellulosic biomass and tween-80 is needed to enhance its enzyme saccharification.

A review on thermochemical pretreatment in Lignocellulosic bioethanol production (목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰)

  • Ko, Jae-Jung;Yun, Sang-Leen;Kang, Sung-Won;Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • The production of bioethanol, which is one of the alternative fuel, cause the various problem such as agflation in human society. As a substitute for the feedstock, lignocellulosic biomass have a big potential. However, bioethanol production with cellulosic material is not commercialized due to high cost. Thermochemical pretreatment to improve the rate of enzyme hydrolysis and increase the recovery of fermentable sugar, is required in order to achieve the cost down in bioethanol production. In this study, various problems and technologies for pretreatment is introduced. Acid hydrolysis, alkali hydrolysis, steam explosion, organosolv process, ammonia explosion, and wet oxidation pretreatment remove lignin and hemicellulose, and reduce cellulose crystallinity. Optimization of pretreatment process on various sources of lignocellulosic biomass such as softwood, hardwood, and straw should be performed.

  • PDF

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

Properties of Boards Prepared From Woody of Broussonetia Kazinoki Sieb. (닥나무 목질부로 제조된 보드의 성질(I))

  • Oh, Seung Won;Park, Seong Cheol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.216-221
    • /
    • 2009
  • This study was investigated the properties of boards prepared from woody of Broussonetia Kazinoki differed in density of board and mixed quantity of powdered phenolic resin. Water absorption decreased as the density of boards and resin content increased, but bending strength and brinell hardness increased as the density of board and the quantity of resin added increased. Thickness swelling increased as the density of boards went up, and that, in contrary, decreased as the quantity of resin added to the boards.

Variation of Adenosine tri-Phosphate(ATP) in Fermentation-Extinction of Food Wastes with Wood Bio-Chip (목질바이오칩에 의한 음식물쓰레기 발효-소멸반응에서의 아데노신3인산의 변화)

  • Oh, Jeong-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • The overall indicator of microbial activity in the fermentation-extinction reaction of food waste by using bio wood-chips were investigated by considering adenosine tri-phosphate(ATP). Degradation rate of organic compounds, which was represented by chemical oxygen demand(COD) and total nitrogen(TN), was increased with the concentration of adenosine tri-phosphate during fermentation-extinction reaction of food waste by using bio-wood chips. With this view, the ATP would be one of the overall evaluation indicator of organic degradation in the species of bio-wood chip for the fermentation-extinction of food waste.