• Title/Summary/Keyword: 모형재하시험

Search Result 136, Processing Time 0.023 seconds

Effect of Loading Rate to Bearing Capacities (지지력에 미치는 재하속도에 관한 해석적 연구)

  • 박중배
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.147-158
    • /
    • 1997
  • In this study, it is examined that partial drain has an effect of bearing capacities and deformations on intermediate soils. To compare the numerical and experimental results, this study uses CRISP90 which is composed of Modify Cam-Clay Model for calculation and Geotechnical Centrifuge in model test. As the results of analysis, we can classify relative loading rate into three ranges which are drain, undrain and partial drain. Besides it is proved that partial drain range is about 103.

  • PDF

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.

The Model Test on Load Reduction Effect of Caps Foundation Method (캡스기초공법의 하중경감효과에 관한 모형시험)

  • Park, Jong-Man;Kang, Chi-Gwang;Kwak, Jung-Min;Han, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.479-486
    • /
    • 2019
  • The caps foundation method can reduce the load of a building by using the arching effect, but verification of the method is still insufficient. In this paper, a model test was performed to quantitatively prove the load reduction effect by this method. The test was carried out using six conditions according to the size of caps foundation block and the area of the loading plate. The test results show that the earth pressure was the highest at the position closest to the loading point regardless of the size of caps foundation block and the area of the loading plate. At the highest earth pressure position, when the loading plate area was 30 cm × 30 cm, the earth pressure of a small block was reduced by 35.4% on average, and that of a big block was reduced by 39.7% compared to the pressure with no block. When the loading plate area was 60 cm × 60 cm, the earth pressure of the small block was reduced by 33.9% on average, and the earth pressure of the big block was reduced by 42.7%. Therefore, if the caps foundation method is applied, the load will be reduced by more than 33% for a small block and 39% for a big block.

The Evaluation of Stability for Hook-type Bonding Method of Pile Foundation and Cap (훅타입 말뚝두부보강 기초의 안정성 평가)

  • Lee, Heunggil;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • The typical bonding methods which connect steel pipe pile and spread footing is bolted bonding method using +type cover plate for reinforcing a head of steel pipe pile. In this paper, stability of spread footing in pile foundation have been evaluated by loading test of +type cover plate for reinforcing a head of pile and hook type bonding method. The presents results from a series of pilot model test on vertically loaded piles foundation of bolted bonding method and hook type bonding method, pile foundation is identified to safety due to pile foundation exceed 8.5~21% which more than yield stress of steel pipe pile. As the results of horizontal loading tests, peak load of piles foundation of hook type bonding method has estimated in 41.1tonf and it was exceed about 33% which more than pile foundation of bolted bonding method.

  • PDF

An Experimental Study on the Structural Performance of Horizontally Curved Precast PSC Girder (프리캐스트 곡선 PSC 거더의 구조 성능에 관한 실험연구)

  • Lee, Doo Sung;Choi, Woo Suk;Kim, Tae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.747-757
    • /
    • 2015
  • The main purpose of this study is to investigate the static behavior of a horizontally curved prestressed concrete (PSC) girder. A 30m long full-scale curved PSC girder with 80.0m radius is fabricated by a portable curved form system. Deflections and concrete strains at the middle of span were measured. The obtained experimental results have been compared to those from F.E.A. analysis. When a initial crack developed, the applied load was 1.3 times the service design load and the vertical deflection at the middle of span satisfied the requirement for a live load state according to the Korea Bridge Design Specifications (2010). Also, the ductility of the full scale specimen satisfied the limit in the Specifications (2010). To verify the experimental results, a numerical F.E. analysis was carried and confirmed that the data were similar with results from the test above. The horizontally curved PSC girder fabricated on site was found to have enough strength for safety under and after construction.

Development of Asphalt Concrete Rutting Model by Triaxial Compression Test (삼축압축시험을 이용한 아스팔트 혼합물의 소성변형 파손모형 개발)

  • Lee, Kwan-Ho;Hyun, Seong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • This study intends to evaluate of the characteristics of pavement deformation and develop the model for prediction model in the asphalt layer using a regression analysis. In test, there are two different asphalt binders and 5 different aggregate types. The air voids of hot mix asphalt are 6% and 10% for target value. Repeated triaxial compression test with 3 different confining pressures was used for test at 3 different test temperatures. It is going to verify the main parameters for permanent deformation of HMA and to develop the distress model. This paper is to figure out the factor affecting the pavement deformation, and then to develop model the pavement deformation for asphalt mixture. Also, the reliability of prediction model has been studied. The permanent deformation prediction model for asphalt mixtures with temperature, loading time, and air voids has been developed and the proposed permanent deformation prediction model has been validated by using the multiple regression approach which is called Statistical Package for the Social Sciences(SPSS).

Undrained Behavior of Model Drilled Shafts to Inclined Repeated Loadings (경사반복하중을 받는 모형현장타설말뚝의 비배수 거동)

  • 조남준;박정순;이장덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.77-82
    • /
    • 2001
  • 반복하중을 받는 현장타설말뚝에 대한 두 가지의 주요 관심사항은: (a) 지지력의 변화 가능성 그리고 (b) 누적변형량에 의한 기초의 가능성 저하이다. 이러한 인자들에 대한 평가를 위하여, 모형점토지반에 설치된 24개의 모형현장타설말뚝에 대한 정적 및 동적경사재하시험(12개의 압축 및 12개의 인발)을 수행하였다. 경사반복압축재하시험에서는 반복하중에 의한 지지력의 변화가 무시할 정도였으며, 누적변형량은 송전철탑의 기능성에 영향을 줄수도 있을 것으로 사료된다. 그러나, 경사반복인발시험에서는 과도한 누적변형이 발생하게 되어 결과적으로 현장타설말뚝주변과 점토사이의 접촉면적이 감소하는 것으로 나타났다. 접촉면적의 감소 결과, 반복경사인발하중에 의해서 경사인발지지력의 현저한 감소가 일어난다는 사실을 알 수 있었다. 정적경사인발지지력의 50에서 70퍼센트에 해당되는 반복하중을 받는 대부분의 현장타설말뚝들은 인발되었다.

  • PDF

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.

Centrifugal Model Test on Stress Concentration Behaviors of Composition Ground under Flexible/Stiff Surcharge Loadings (연/강성 하중을 받는 복합지반의 응력분담거동에 대한 원심모형시험)

  • Song, MyungGeun;Bae, WooSeok;Ahn, SangRo;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.5-15
    • /
    • 2011
  • In this study, centrifuge model tests were performed to investigate stress concentration ratio, stress characteristics of soft clay ground improved by granular compaction piles with changes of piles type, loading condition and area replacement ratio. From the results of rigid loading tests, while vertical stresses acting on clay ground is similar, vertical stresses acting on GCP is larger than those acting on SCP with same replacement ratio. Also, average stress concentration ratio is increased proportionally with increasing the area replacement ratio of GCP and SCP. It was evaluated that average stress concentration ratio of soft clay ground improved by GCP is larger than that of SCP. As a result of flexible loading tests, stress concentration ratio is the highest when replacement ratio of GCP and SCP is 40%. Average stress concentration ratio of soft clay ground improved by GCP is a little more higher than is improved by SCP.

A Study on the Ultimate End Bearing Capacity of Drilled Shafts in Rocks (암반에 설치된 현장타설말뚝의 극한선단지지력에 관한 연구)

  • Jeong, Sangseom;Lee, Jaehwan;Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.5-15
    • /
    • 2013
  • The end bearing capacity of rock-socketed drilled shafts under axial loading is investigated by Hoek-cell tests and a numerical analysis. From the test results, it was found that the ultimate end bearing capacity ($q_{max}$) was influenced by pile diameter, rock mass modulus and the spacing of discontinuity. A new ultimate end bearing capacity method is proposed by taking end bearing capacity influence factors, including rock mass discontinuity, based on field data. Through comparisons with other field data, the proposed $q_{max}$ method represents a definite improvement in the prediction of ultimate end bearing capacity of rock-socketed drilled shafts.