• Title/Summary/Keyword: 모터 선정

Search Result 136, Processing Time 0.021 seconds

Implementation on the Portable Blood Gas Analyzer and Performance Estimation/A Study on the Hydrometer Calibration System using Image Processing (영상처리 기법을 이용한 부액계 자동 교정 시스템 구현)

  • Lee, Yong-Jae;Chang, Kyung-Ho;Oh, Chae-Youn;Jung, Sang-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.258-264
    • /
    • 2003
  • The present paper studies how to calibrate hydrometer using image process. The method aligns particular scales of hydrometer selected for calibrating the hydrometer with the horizontal plane of the reference liquid automatically without man's operation. Major parts composing the system are CCD camera, frame grabber, stepping motor and image process program. The image process program is composed of a part that locates the meniscus and aligns it with a scale and a part that controls the step motor. To verify the performance of the developed method, this study compares the meniscus and scale observed directly with the naked eye with the result of calibration by the manual calibration method. The differences between the corrections were less than $0.004\;kg/m^3$ with uncertainty of $0.06\;kg/m^3$. These showed that the calibration results of the developed hydrometer calibration using image process nearly equal to manual method.

A Study on the Harmonics of Distribution Power System Interconnected with Distributed Generation (분산전원의 배전계통 연계 시 발생하는 고조파에 관한 연구)

  • Park, Jae-Gyun;Kim, Jin-Sung;Oh, Yong-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • In this paper, the analysis of the harmonics of distribution power system interconnected with DG(distributed generation) is simulated by using PSCAD/EMTDC and evaluated the harmonics. The modeling system for simulation is similar to the actual distribution system, and solar power system. The simulation analyses are performed at connection points for each sector. Harmonic standards of interconnection with DG (IEEE Std 1547 and IEEE Std 519) are applied to the evaluation algorithm, converted the simulated data through FFT method, evaluated by THD and TDD separately. The harmonic contents in the case of without DG and each sector with DG are evaluated and compared. The results of evaluation showed the effect that the harmonic contents are appropriated at all sector with DG (without DG) in the distribution power systems but the large induction motor(50KW) is increased the harmonic contents.

Design and Optimization of an Knee Joint of Fully-active Transfemoral Prosthesis for Stair Walking (계단 보행을 위한 능동형 대퇴의지 무릎 관절의 설계 및 최적화)

  • Ahn, Hyoung-Jong;Lee, Kwang-Hee;Hong, Yi;Lee, Chul-Hee
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • In this study, a fully active transfemoral prothesis with a knee joint is designed considering stair walking conditions. Since the torque at the knee joint required for stair walking condition is relative high compared with the one in normal walking condition, the proposed design has high torque generating mechanism. Moreover, the transfemoral prothesis is designed in compact size to reduce its weight, which is related to comfortable fit and fatigue of patients. Flat type BLDC motor is used for simple and compact structure and various components are used to generate required torque with target working angle and speed. The weight reduction of structure is carried out using optimization method after the initial design process is complete. The optimization is conducted under the load conditions of stair walking. The optimized design is validated via finite element analysis and experiments. As a result, the weight is reduced using topology and shape optimization but maintaining the safety of structure. Also the space efficiency is improved due to its compact size.

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure (복합 링크 구조 기반의 가변형 구형로봇 설계)

  • Kang, Hyeongseok;Joe, Seonggun;Lee, Dongkyu;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.26-33
    • /
    • 2017
  • We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.

Design and Fabrication of a small Coaxial Rotorcraft UAV (동축반전 헬리콥터형 소형 무인항공기 설계 및 제작)

  • Kim, Sang-Deok;Byun, Young-Seop;Song, Jun-Beom;Lee, Byoung-Eon;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.293-300
    • /
    • 2009
  • The rotorcraft-based unmanned aerial vehicle(UAV) capable of performing close-range surveillance and reconnaissance has been developed. Trade studies on mission feasibility led to the adoption of a coaxial rotorcraft with twin rotors counter-rotating in one axis and driven by electric motors. A commercial off-the-shelf flight control computer(FCC) and a radio frequency modem were adopted for autonomous navigation. In order to achieve an aerial view, commercial charge-coupled device camera was also integrated into the vehicle. The performance of the completed vehicle was proved with manual flight test, and mission capability was verified through waypoint navigation flight after being equipped with FCC. This paper treats the whole process of design and system integration for development of the coaxial rotorcraft UAV.

Design and test of cable based airborne capture mechanism for drone (케이블을 사용한 드론용 공중 포획 메커니즘의 설계 및 테스트)

  • Jung, Sanghoon;Nguyen, Van Sy;Kim, Byungkyu;An, Taeyoung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.10-16
    • /
    • 2020
  • We propose a capture mechanism based on the principles of fishing nets that can be mounted on the drone using cable. The gripper mechanism, mainly proposed for the drone is heavy, and is limited to catch standardized objects. In contrast, the proposed capture device in this paper is light, flexible, and can capture various types of objects from a long distance. The theoretical relationships between cables and mechanisms were analyzed. Finally, the capture device was designed and manufactured to be installed in the drone (DJI S900) to conduct capturing experiments for various objects and verify the validity.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

Mechanism Design and Control Technique of Duct Cleaning Robot with Self-position Recognition (자기위치 인식 가능한 덕트 청소로봇의 메카니즘 설계 및 제어기법)

  • Jang, Woojin;Seo, Myungin;Ha, Junhwan;Park, Kyongtae;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.85-95
    • /
    • 2019
  • This work shows how to design a robot structure and to control to overcome obstacles while traveling through ducts of various diameters and shapes by three-legged robot. Circuits are centered in the body to connect the three wheel bodies that are driven around the center body with the 4-section slider link structure. Also, the springs are used to contract and expand the robot legs so that it can be caparable of various environments. Geared motor, spring, and belt were selected based on the static and dynamic calculation to be suitable to horizontal and vertical travels. The center body is equipped with a camera and the distance sensors, and a control algorithms are implemented so that it can be successfully performed in L-type and T-type ducts. Using UWB modules and trilateration algorithm, the location of the duct-cleaning robot inside the duct could be identified successfully.

A Study on Indoor Air-quality Improvement System Using Actuator (선형엑츄에이터를 이용한 실내 공기질 개선 시스템에 대한 연구)

  • Seo, Do-Won;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.183-190
    • /
    • 2021
  • This study is a study on the implementation and operation of smart air cleaning system to improve indoor air quality. Recently, the problem of indoor air quality is getting serious due to various environmental factors. In this study, to improve the problems of indoor air quality, we implement an air cleaning system using IoT sensor. In particular, we proposed a system that can measure air pollution in real time and change different air flow paths according to pollution level. Through this, we examined efficient air quality improvement, extension of filter life, and system energy reduction. In addition, the main functions of the indoor air quality improvement system were constructed and prototypes were manufactured to confirm the operability. Finally, the utility of fine dust resolution through the implementation of the indoor air quality improvement system was examined.

Proposal of autonomous take-off drone algorithm using deep learning (딥러닝을 이용한 자율 이륙 드론 알고리즘 제안)

  • Lee, Jong-Gu;Jang, Min-Seok;Lee, Yon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2021
  • This study proposes a system for take-off in a forest or similar complex environment using an object detector. In the simulator, a raspberry pi is mounted on a quadcopter with a length of 550mm between motors on a diagonal line, and the experiment is conducted based on edge computing. As for the images to be used for learning, about 150 images of 640⁎480 size were obtained by selecting three points inside Kunsan University, and then converting them to black and white, and pre-processing the binarization by placing a boundary value of 127. After that, we trained the SSD_Inception model. In the simulation, as a result of the experiment of taking off the drone through the model trained with the verification image as an input, a trajectory similar to the takeoff was drawn using the label.