• Title/Summary/Keyword: 모세관 계면

Search Result 19, Processing Time 0.027 seconds

Visualization for racing effect and meniscus merging in underfill process (언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화)

  • Kim, Young Bae;Kim, Sungu;Sung, Jaeyong;Lee, MyeongHo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.351-357
    • /
    • 2013
  • In flip chip packaging, underfill process is used to fill epoxy bonder into the gap between a chip and a substrate in order to improve the reliability of electronic devices. Underfill process by capillary motion can give rise to unwanted air void formations since the arrangement of solder bumps affects the interfacial dynamics of flow meniscus. In this paper, the unsteady flows in the capillary underfill process are visualized and then the racing effect and merging of the meniscus are investigated according to the arrangement of solder bumps. The result is shown that at higher bump density, the fluid flow perpendicular to the main direction of flow becomes stronger so that more air voids are formed. This phenomenon is more conspicuous at a staggered bump array than at a rectangular bump array.

Modeling of Capillary Filling Length in Silwet L-77 Added Poly(Dimethylsiloxane) (PDMS) Microchannels (Silwet L-77 이 포함된 Polydimethylsiloxane(PDMS) 마이크로 채널의 유동 길이 모델링)

  • Lee, Bom-Yee;Lee, Bong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.823-829
    • /
    • 2014
  • In the present study, simple models were proposed to predict the capillary-driven flow length in a surfactant-added poly(dimethylsiloxane) (PDMS) rectangular microchannel. Owing to the hydrophobic nature of PDMS, it is difficult to transport water in a conventional PDMS microchannel by means of the capillary force alone. To overcome this problem, microchannels with a hydrophilic surface were fabricated using surfactant-added PDMS. By measuring the contact angle change on the surfactant-added PDMS surface, the behavior was investigated to establish a simple model. In order to predict the filling length induced by the capillary force, the Washburn equation was modified in the present study. From the investigation, it was found that the initial rate-of-change of the contact angle affected the filling length. Simple models were developed for three representative cases, and these can be useful tools in designing microfluidic manufacturing techniques including MIcroMolding In Capillaries (MIMIC).

Measurements of Flow Meniscus Movement in a Micro Capillary Tube (마이크로 원형 모세관에서 계면 이동 현상의 측정)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Manufacturing and Application of Natural Surfactants for Cosmetics (화장품용 천연계면활성제의 제조 및 이용 최신기술)

  • Kim, Hyung-Won
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.197-211
    • /
    • 2013
  • Surfactants which have ability to decrease surface tension through surface activation between the interfaces are used as essential major raw materials for detergents and cosmetics. Typical synthetic detergents such as EO (ethylene oxide), LAB (linear alkylbenzene) are made from chemical surfactant derived from petrochemicals, therefore, they are responsible for major environment contaminations and ecosystem destruction, especially of rivers and also cause atopic dermatitis through strong skin stimulus of these small molecular's powerful permeability and lead to cancers if they get into organs through capillary. Now worldwide interest is increasing to develop new natural surfactants and biosurfactants as ecological, biodegradabl, harmless and multi-functional new amphiphillic materials which replace these synthetic surfactants.

Analysis of the Anionic Surfactants by Capillary Electrophoresis (모세관 전기영동 장치를 이용한 음이온계 계면활성제의 분석)

  • Jeong, Hyuk;Kim, Seung Sun;Lee, Byung Min;Kang, Ho-Cheol;Lee, Won;Kim, Hai-Dong
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.435-440
    • /
    • 1994
  • Qualitative and quantitative analysis for the anionic surfactants used in the metal washing fluid (brand names are BFA and BCA) was performed by the capillary electrophoresis. Acetonitrile and sodium benzoate were mixed with the buffer solution which controlled at pH 10. Under the 18kV applied voltage, the electropherograms have shown the theoretical plates more than $10^4$. Determined as the concentration at the S/N~3, the typical detection limit was ~5 ppm and the calibration curves have shown the correlation coefficients higher than ~0.99. Based on these results, it was concluded that each components were octanoate, decanoate, dodecanoate, tetradecanoate, hexadecanoate and the relative ratio was 1.0 : 1.0 : 6.5 : 2.1 : 0.8 for the BFA.

  • PDF

Dynamics of Electrowetting of a Liquid-Liquid Interface in a Cylindrical Tube (원형관내의 액체-액체 계면에 대한 전기습윤 현상의 동적 거동)

  • Kang, Kwan-Hyoung;Chung, Won-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.557-560
    • /
    • 2006
  • The contact angle of a meniscus and a droplet can be controlled by using electrowetting phenomena. We investigated the dynamic aspect of electrowetting for an oil-electrolyte interface formed inside a closed glass tube. A step input voltage is applied and the subsequent motion of the interface is recorded by a high-speed camera. A kind of capillary instability is observed near the three-phase contact line, which could degrade the reliability of device utilizing electrowetting such as electrowetting liquid lens. The dynamics of interface motion for different input voltages and the fluid viscosities are analyzed and discussed based on the experimental results.

  • PDF

Effect of Coexisting Ions on Electrokinetic Injection in Capillary Electrophoresis Analysis (모세관 전기영동 분석에서 계면 동전기 주입에 미치는 공존 이온의 영향)

  • Lee, Kwang-Woo;Jeon, Ji-Young;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1996
  • A rapid analytical method based on capillary electrophoresis is described for the determination of trace anions in high-purity chemicals which is used to prevent corrosion demage in nuclear power plants. Separations are carried out at 20kV using trimethylsilane-coated fused-silica capillary ($70cm{\times}50$ or $75{\mu}m$ i.d.) with the electrolyte of 5mM Chromate(pH=8). Detection was achieved using on-column indirect photometry at 254nm. The simultaneous analysis of inorganic anions, chloride, nitrate, sulfate, azide and phosphate was performed using methods of hydrodynamic(>1ppm) and / or electrokinetic(<1ppm) injection. The results of studies on the coexisting anions on analyte ions shows that peak responses of analyte in hydrodynamic injection is constant without effect of coexisting anions, but those of analysis in electrokinetic injection is strongly dependant upon the kind of coexisting anions and its ionic mobility. The analyte enrichment rate, hence peak response, is positive relationship with the resistance of the sample solution. Thus, appropriate measures, such as standard addition or internal standard technique, must be used to account for differences in conductance of standard and sample solutions.

  • PDF

Study for the separation and comparison of azo dyes and their diazo components (아조염료와 디아조 성분의 분리 및 비교에 관한 연구)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Well known environmental wastes from dye industry were separated by the micellar electrokinetic capillary chromatography(MECC). These wastes include H-acid modifier and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. The results of the separation were compared with the result obtained by the HPLC using ion-pairing mechnism. MECC method was also applied to separate a few direct dyes including Direct Blue 2, Direct Blue 6 and Direct Blue 15, and reactive dye such as Reactive Orange 4. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid which are used as diazo components of the typical azo dyes. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Analysis of dye components using MECC and ion-pairing chromatography (MECC법과 Ion-Pairing 크로마토그래피법을 이용한 염료성분의 분석)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Micellar electrokinetic capillary chromatography(MECC) and HPLC with ion-pairing mechanism were applied for the separation of the well known environmental wastes from dye industry. These compounds include H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. MECC method was also applied to separate few acid dyes including Acid Orange 7, Acid Orange 5 and Acid Blue 92 and direct dye such as Direct Red 80. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of a given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.