• Title/Summary/Keyword: 모사 프로그램

Search Result 456, Processing Time 0.033 seconds

Development and Evaluation of Quality Assurance Worksheet for the Radiation Treatment Planning System (방사선치료계획 시스템의 정도관리 절차서 개발 및 유용성 평가)

  • Cho Kwang Hwan;Choi Jinho;Shin Dong Oh;Kwon Soo Il;Choi Doo Ho;Kim Yong Ho;Lee Sang Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.186-191
    • /
    • 2004
  • The periodic Quality Assurance (QA) of each radiation treatment related equipments is important one, but quality assurance of the radiation treatment planning system (RTPS) is still not sufficient rather than other related equipments in clinics. Therefore, this study will present and test the periodic QA program to compare, evaluation the efficiency of the treatment planning systems. This QA program is divided to terms for the input, output devices and dosimetric data and categorized to the weekly, monthly, yearly and non-periodically with respect to the job time, frequency of error, priority of importance. CT images of the water equivalent solid phantom with a heterogeneity condition are input into the RTPS to proceed the test. The actual measurement data are obtained by using the ion chamber for the 6 MV, 10 MV photon beam, then compared a calculation data with a measurement data to evaluate the accuracy of the RTPS. Most of results for the accuracy of geometry and beam data are agreed within the error criteria which is recommended from the various advanced country and related societies. This result can be applied to the periodic QA program to improve the treatment outcome as a proper model in Korea and used to evaluate the accuracy of the RTPS.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Performance Analysis on the Multi Stage Reheater Regeneration Cycle for Ocean Geothermal Power Generation (해양지열발전용 다단재열재생사이클 성능해석)

  • Lee, Ho Saeng;Cha, Sang Won;Jung, Young Kwon;Kim, Hyeon Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • In order to study the improvement of the multi stage regeneration cycles, muti-stage processes were applied to the cycles, respectively or together. The kinds of the cycles are multi stage reheater cycle (MS) and multi stage reheater regeneration cycle (MSR). Working fluid used was R134a and R245fa. Temperature of the heat source was $65^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$, and temperature of the heat sink was $5^{\circ}C$. Optimization simulation was conducted for improving the gross power and efficiency with multi stage reheater regeneration cycle for ocean thermal energy conversion(OTEC) with changing of a heat source, kind of the working fluid, and type of the cycle. Performance analysis of the various components was simulated by using the Aspen HYSYS for analysis of the thermodynamic cycle. R245fa shows better performance than R134a. This paper showed the most suitable working fluid with changing of a heat source and the kinds of working cycle. Compared to each other, MS showed better performance at gross power and MSR showed higher cycle efficiency.

An Evaluation of the Fire and Explosion Effect by BTX released in a Chemical Plant (화학공장에서의 BTX누출에 의한 화재$\cdot$폭발 영향 평가)

  • Park Ki-Chang;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.9-18
    • /
    • 2000
  • Accident analysis are useful in the design stage of chemical plants and their surrounding structures. Also, analysis results are required for safety management of existing plants. In this paper, the fire and explosion effect by BTX released was evaluated. The computer program was prepared for accident analysis and adopted for evaluating the magnitude of fire (pool fire) and explosion (UVCE) effect. The thermal radiation was used as a measure of fire magnitude and the overpressure as a measure of explosion magnitude. And probit analysis was made for each case. As a case study, benzene tank model was used. The simulation results of explosion of benzene showed that the damage within 20 meters from the accident spot was severe and the damage beyond 60 meters was negligible. The simulation results of fire of benzene showed that the damage in summer is bigger than that in winter. And the damage of city located inland seems to be bigger than that of city in seaside. And thermal radiation effects was negligible beyond 40 meters-distance from the accident spot.

  • PDF

Evaluation of Land Subsidence Risk Depending on Grain Size and Verification using Numerical Analysis (지반입도조건에 따른 지반함몰 가능성 평가 및 수치해석적 검증)

  • Lee, Jong-Hyun;Jin, Hyun-Sik;Baek, Yong;Yoon, Hyeong-Suk
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • In this study, filter conditions by difference in grading between core material and filter material used for dam construction was applied as evaluation condition for surrounding ground conditions near excavation site in a bid to identify the risk of land subsidence resulting from the erosion of soil particles. To that end, filter conditions proposed for the test was evaluated and the risk of land subsidence depending on grain size conditions was also evaluated using the filter conditions developed by COE. Consequently, evaluation diagram that can be used to determine the risk of land subsidence using grain size conditions obtained from ground investigation data was developed, which is expected to help evaluate the possibility of land subsidence depending on changes to the stratum. To simulate the particle flow process, PFC3D program was used. It's not only intended to determine the land subsidence pattern caused by falling ground water level but also predict and evaluate the land subsidence caused by soil erosion using grain size condition which can be verified by numerical analysis approach.

Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure (Long Fiber Thermoplastic(LFT) 사출성형 공정에서 캐비티 내 압력 측정 및 CAE해석을 활용한 점도 추정)

  • Lim, Seung-Hyun;Jeon, Kang-Il;Son, Young-Gon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1982-1987
    • /
    • 2011
  • In this study, we proposed a new method that can estimate viscosity curves of unknown samples or high viscous resins like LFT(Long Fiber Thermoplastics). First, we built the system that could detect the pressure of melt during filling the cavity in a mold. It consists of both pressure sensors which are installed in a mold and the Kit which can convert analog signal to digital signal. The kit measures the melt pressure in mold cavity. We could also simulate the cavity pressure during filling process with commercialized CAE softwares(ex, Moldflow). If the viscosity data in CAE Database were correct, the simulated pressure profile coincided with the measured one. According to our proposed algorithm, we obtained correct viscosity data by iterating the process of comparing the simulated profile with the measured one until both coincided each other. In order to verify this algorithm, we selected well-defined PP resin and concluded that the experimental profile comply with the CAE profile. We could also estimate the optimized viscosity curves for PP-LFT by applying our method.

3D Finite Element Analysis of Lateral Loaded Pile using Beam and Rigid Link (빔요소와 Rigid 링크를 이용한 수평하중에 대한 말뚝 거동 3차원 유한요소해석)

  • Park, Du-Hee;Park, Jong-Bae;Kim, Sang-Yeon;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.271-277
    • /
    • 2013
  • The BNWF (Beam on Nonlinear Winkler Foundation) model is one of the simplest idealizations for a pile embedded in soil as it ignores the continuity of the soil. This method is difficult to model the behavior of pile group foundation subjected to lateral loading. The limitation can be overcome with the utilization of the finite element method (FEM) or finite different method (FDM) to represent a pile element embedded in a soil medium. Both the ground and piles are modeled with soild elements. The solid elements, which do not have rotational degree of freedom, is not appropriate for modeling piles. It can be overcome by substantially increasing the number of elements, which can be prohibitive for 3D modeling. This paper used the beam element and rigid link incorporated in the OpenSees to model the pile. The accuracy of the model is validated through comparison with lateral load test and BNWF analysis. It is shown that the method can capture the measured behavior accurately. It is therefore recommended to be used in group pile analyses.

Experimental Study on Loading Capacity of SY Corrugated Steel Form for RC Beam and Girder (SY 비탈형 보거푸집의 내하성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Hwhang, Yoon-Koog;Shin, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.32-39
    • /
    • 2021
  • Recently, necessities of steel form for reinforced concrete beam and girder have been emphasized in building structures for the reduction of the construction period and the labor cost. SY Beam was developed for the these purposes and is roll-formed using thin steel plate. On this research, we tried to evaluate and verify the performance and behavior of SY Beam under construction loading stage as like pouring in situ concrete. For the standard shape of SY beam, structural modelling with various steel thicknesses has carried out using MIDAS GEN program. From results of modelling, the width and height of SY Beam were determined 600mm and 400mm respectively. For 3 SY Beams, the loading experiment was performed to measure vertical and horizontal displacement under stacking sand, concrete block, and bundle of rebar. As a result, the vertical deflection showed a tendency to decrease as the thickness increased. In the horizontal displacement, the trend according to the thickness was not clearly observed. From the evaluation on the loading experiment, it is considered that the SY Beam can secure both workability and structural safety. In particular, the SY Beam(1.2mm) hardly generates horizontal displacement, so it has excellent load-bearing capacity. So, we judged that the SY Beam with 1.2mm steel plate has excellent performance and consider to be immediately commercially available.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.