• Title/Summary/Keyword: 모바일 로봇 제어

Search Result 128, Processing Time 0.027 seconds

A Mobile Robot Estimating the Real-time Moving Sound Sources by using the Curvature Trajectory (곡률궤적을 이용한 실시간 이동하는 음원을 추종하는 모바일 로봇)

  • Han, Jong-Ho;Park, Sook-Hee;Lee, Dong-Hyuk;Noh, Kyung-Wook;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.48-57
    • /
    • 2014
  • It is suggested that the curvature trajectory be used to estimate the real-time moving sound sources and efficiently the robot estimating the sound sources. Since the target points of the real-time moving sound sources change, the mobile robot continuously estimates the changed target points. In such a case, the robot experiences a slip phenomenon due to the abnormal velocity and the changes of the navigating state. By selecting an appropriate curvature and navigating the robot gradually by using it, it is possible to enable the robot to reach the target points without having much trouble. In order to recognize the sound sources in real time, three microphones need to be organized in a straight form. Also, by applying the cross-correlation algorithm to the TDOA base, the signals can be analyzed. By using the analyzed data, the locations of the sound sources can be recognized. Based on such findings, the sound sources can be estimated. Even if the mobile robot is navigated by selecting the gradual curvature based on the changed target points, there could be errors caused by the inertia and the centrifugal force related to the velocity. As a result, it is possible to control the velocity of both wheels of the robot through the velocity PID controller in order to compensate for the slip phenomenon and minimize the estimated errors. In order to examine whether the suggested curvature trajectory is appropriate for estimating the sound sources, two mobile robots are arranged to carry out an actual experiment. The first robot is moved by discharging the sound sources, while the second robot recognizes and estimates the locations of the discharged sound sources in real time.

Energy-Effective Low-Cost Small Mobile Robot Implementation for Mobile Sensor Network (모바일 센서 네트워크를 위한 에너지 효율적이고 경제적인 소형 이동 로봇의 개발)

  • Kim, Hong-Jun;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.284-294
    • /
    • 2008
  • In this paper, we describe an implementation of small mobile robot that can be used at research and application of mobile sensor networking. This robot that will constitute the sensor network, as a platform of multi-robot system for each to be used as sensor node, has to satisfy restrictions in many aspects in order to perform sensing, communication protocol, and application algorithms. First, the platform must be designed with a robust structure and low power consumption since its maintenance after deployment is difficult. Second, it must have flexibility and modularity to be used effectively in any structure so that it can be used in various applications. Third, it must support the technique of wireless network for ubiquitous computing environment. At last, to let many nodes be scattered, it must be cost-effective and small. Considering the above restrictions of the mobile platform for sensor network, we designed and implemented robots control the current of actuator by using additional circuit for power efficiency. And we chose MSP430 as MCU, CC2420 as RF transceiver, and etc, that have the strength in the aspect of power. For flexibility and modularity, the platform has expansion ports. The results of experiments are described to show that this robot can act as sensor node by RF communication process with Zigbee standard protocol, execute the navigation process with simple obstacle avoidance and the moving action with RSSI(Received Signal Strength Indicator), operate at low-power, and be made with approx. $100.

Physical Prototyping Model based Development Environment for Hard Real-Time Control Systems (경성 실시간 제어 시스템을 위한 실물 프로토타이핑 모델 기반 개발 환경)

  • Kim, Dong-Hoon;Jun, Sang-Ho;Kang, Soon-Ju
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.55-58
    • /
    • 2011
  • 본 논문에서는 경성 실시간 제어 시스템 개발의 어려움을 해결하고자 실물 프로토타이핑(Physical Prototyping) 기법을 적용한 임베디드 실시간 시스템 소프트웨어 개발 방법론에 적합한 개발 환경을 구현하였다. 그리고 이를 검증하기 위한 사례연구로서 두 바퀴 형태의 이동 로봇의 설계 및 구현과 실험을 통해 검증한다. 제안한 개발 환경은 크게 3 단계의 개발환경으로 구성되어 있다. 첫 번째는 타겟 시스템의 요구 분석 및 시스템 모델링을 설계하는 가상 프로토타이핑 개발 환경이다. 두 번째는 실물 프로토타이핑 모델을 설계하여 기능 및 성능에 대한 검증을 하는 실물 프로토타이핑 개발 환경이다. 마지막으로 이러한 검증 단계를 지속적으로 거치면서 점증적으로 소프트웨어를 구현하는 응용분야 적응형 점증적 프로토타이핑 개발 환경이 있다. 또한, Matlab, Simulink, 유비노스 아키텍처 및 이클립스 기반의 통합 개발 환경, ESPS 모바일 보드를 사용하여 경성 실시간 제어 시스템의 설계 및 구현, 성능 검증을 통해 제안한 개발 환경의 유효성을 입증한다.

Comparison of PID Controllers by Using Linear and Nonlinear Models for Control of Mobile Robot Driving System (모바일 로봇 구동 시스템 제어를 위한 선형 및 비선형 모델 기반 PID 제어기 성능 비교)

  • Jang, Tae Ho;Kim, Youngshik;Kim, Hyeontae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • In this study, we conduct linear and nonlinear modeling of the DC motor driving system of a wheeled mobile robot, which is a nonlinear system involving dead zone, friction, and saturation. The DC motor driving system consists of a DC motor, a wheel, and gears. A linear DC motor driving system is modeled using a steady-state response and parameter measurements. A nonlinear DC motor driving model is identified with the use of the Hammerstein-Wiener method. By using these models, PID controllers for the DC motor system are then established. Each PID controller is applied as a low-level controller in order to achieve posture stabilization control for the real mobile robot. We also compare the performance of the proposed PID controllers in posture stabilization experiments by using several different final robot postures.

The Development of Ecobot Robot for Friendly Environment Smart Home Appliance Application System (친환경 스마트 가전 응용 시스템용 Ecobot 로봇 플랫폼 개발)

  • Moon, Yong-Seon;Bae, Young-Chul;Cha, Hyun-Rok;Roh, Sang-Hyun;Park, Jong-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.480-485
    • /
    • 2010
  • In this paper, we developed mobile robot platform called Ecobot for the application system of friendly environment smart home appliance. Ecobot fulfills the purposes of monitoring of the healthy environment and guidance in the application system of friendly smart environment home appliance, home network formed by Zigbee network. For the healthy environment, the system contains monitoring sensor. Moreover, it continuously keeps the healthy environment by controlling the smart home appliances linkng with Zigbee network. And also using the URG-04LX laser distance sensor, it monitors indoor environment through autonomous moving and collision avoidance.

Tracking Control for Mobile Platform based on Dynamics (동역학을 기반으로 한 모바일플랫폼 궤적제어)

  • Lee, Min-Jung;Park, Jin-Hyun;Jin, Tae-Seok;Cha, Kyung-Hwan;Choi, Young-Kui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • The mobile robot is known as a nonlinear system with constraints. The general tracking controller for the mobile platform has been divided into the kinematic and the dynamic controller. The reason of dividing controller is the constraints. We can get some information through some numerical experiments. When the reference linear and angular velocity were given, the stability of mobile robot without the kinematic controller depend on the start point of reference cart. Therefore this paper composed of two controller for solving tracking problem. The main controller is the dynamic controller which used generally such as the PID controller. And this paper adopts the auxiliary controller in order to compensate the difference of initial point between the reference cart and a mobile robot. Finally, the numerical experiment is performed in order to show the validity of our method.

  • PDF

People Tracking and Accompanying Algorithm for Mobile Robot Using Kinect Sensor and Extended Kalman Filter (키넥트센서와 확장칼만필터를 이용한 이동로봇의 사람추적 및 사람과의 동반주행)

  • Park, Kyoung Jae;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, we propose a real-time algorithm for estimating the relative position and velocity of a person with respect to a robot using a Kinect sensor and an extended Kalman filter (EKF). Additionally, we propose an algorithm for controlling the robot in the proximity of a person in a variety of modes. The algorithm detects the head and shoulder regions of the person using a histogram of oriented gradients (HOG) and a support vector machine (SVM). The EKF algorithm estimates the relative positions and velocities of the person with respect to the robot using data acquired by a Kinect sensor. We tested the various modes of proximity movement for a human in indoor situations. The accuracy of the algorithm was verified using a motion capture system.

Development of Genetic Algorithm for Robust Control of Mobile Robot (모바일 로봇의 견실제어를 위한 제네틱 알고리즘 개발)

  • 김홍래;배길호;정경규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • This paper proposed trajectory tracking control of mobile robot. Trajectory tracking control scheme are real coding genetic-algorithm and back-propergation algorithm. Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studios have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using Real coding Genetic Algorithm(RCGA) and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verify numerical simulations and the results show better performance than constant gain controller.

  • PDF

A study on Development of Precise Orientation control Algorithm of the Mobile Robot Based Vision Technology (비전기술에 의한 모바일 로봇의 정밀 자세 제어 알고리즘 개발에 관한 연구)

  • Sim, Hyun-Seok;Kim, Tae-Gwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.129-138
    • /
    • 2015
  • This study describe a new method to control posture and velocity for a wheeled mobile robot using visual feedback control method with a position based visual feedback. To slove the problem of vibration phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed visual servo control law introduces the fusion function based on a blending function. The chattering problem and rapid motion of the mobile robot can be eliminated. And we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture control law using visual servoing is verified by a theoretical analysis and simulation and experimental results.