• Title/Summary/Keyword: 모멘트 접합부

Search Result 274, Processing Time 0.025 seconds

Experimental study on the Behavior CFT Column to H-Beam Endplate Connections with Penetrated High Strength Bolts (II) (관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형강관 기둥.H형강 보 접합부의 거동에 관한 실험적 연구 (II))

  • Kim, Jae Keon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.109-116
    • /
    • 1999
  • This paper presents an experimental study on the behavior of CFT Column to H-Beam Endplate Connections with penetrated H/T bolts under monotonic loading. The object of this study is to estimate accurately the effect about the thickness of endplate and the arrangement of H/T bolts which was not got a grip on the results reported in the previous paper. Main parameters are the thickness of endplates (12mm, 16mm) and the arrangemement of H/T bolts (EP1, EP2, EP3 Type). The experimental results compared and analysed. 1) The specimens were classified by Bjorhovde's and EC3's method. 2) A formula to predict the ultimate moment of connection was derived based on the T-stub model, and theoretical value $(_tM_u)$ computed by the formula corresponded to the experimental value $(_eM_u)$.

  • PDF

A Study on Unbalanced Moment of Flat Plate Exterior Connections (플랫 플레이트 외부접합부의 불균형모멘트에 관한연구)

  • Choi, Hyun-Ki;Beck, Seong-Woo;Back, Young-Soo;Jin, Eon-Sik;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1-4
    • /
    • 2008
  • Flat plate slab has been widely used in high rise building for its remarkable advantages. However, Flat plate structures under lateral load are susceptible to punching shear of the slab-column connection. Exterior slab-column connections has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connections is susceptible to punching shear failure. For that reason, this study compare ACI 318-05 to CEB-FIP MC 90 that is based on experiment results and existing data of flat plate exterior connections. This study shows that compared to CEB-FIP MC 90 is more exact about eccentric shear stress, unbalanced moment and Both of all are not suitable in large column aspect ratio. Considering gravity shear ratio, These are suitable but design condition only consider gravity shear ratio. So these should be considered differences from change of design condition

  • PDF

Test Results on the Type of Beam-to-Column Connection using SHN490 Steel (SHN490강종의 보-기둥 접합부 형태에 따른 실험적 연구)

  • Kim, So Yeong;Byeon, Sang Min;Lee, Ho;Shin, Kyung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2015
  • In this study, an experimental study to evaluate the seismic performance of beam-to-column connection for medium and low-rise building was conducted. Five connections using SHN490 steel were made with test variables such as flange welded or bolted, web welded or bolted. Specimen SHN-W-W is web welded and flange welded type. Specimen SHN-W-B is web welded and flange bolted type. Specimen SHN-B-W is web bolted and flange welded type. Specimen SHN-B-B is web bolted and flange bolted type. Specimen SHN-EP is a connection with the end plate to the beam ends. Cyclic loadings was applied at the tip of beam following KBC2009 load protocol. The load vs rotation curves for different connection are shown and final failure mode shapes are summarized. The connections are classified in terms of stiffness and strength as semi-rigid or rigid connection. Energy dissipation capacities for seismic performance evaluation were compared.

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

The Numerical Study on Capacity Evaluation of Exposed Steel Column-Base Plate Connection (노출형 철골기둥-베이스 플레이트 접합부의 내력평가를 위한 수치적 연구)

  • Lee, Kwang-Ho;You, Young-Chan;Choi, Ki-Sun;Koo, Hye-Jin;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.26-34
    • /
    • 2016
  • The failure modes of steel column-base plate connection arranged on the basis of AISC Design Guide-#1 and -#10 are base plate tension and compression side flexural yielding, yielding, pull-out and shear failure of anchor rod, concrete crushing in concrete footing and steel column yielding. The bending moment capacity and failure mode in this connection are predicted using limit-state function and we compare these results and test result. In the case that thickness of base plate is relatively thick, bending moment capacity and failure mode in steel column-base plate connection accurately predicted. But in the case that thickness of base plate is relatively thin and axial force do not exist, prediction of failure mode in this connection is somewhat inaccurate.

Seismic Performance Evaluation of Steel Intermediate Moment Frames with Different Heights (다양한 높이를 가진 철골 중간모멘트골조의 내진성능평가)

  • Kim, Dong Hwi;Park, Yu Jin;Han, Sang Whan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.215-222
    • /
    • 2014
  • The objective of this research is to evaluate the seismic performance of steel intermediate moment frames(IMFs) with different heights. The seimic performance is conducted according to ATC-63. Three-, six, nine- and twelve-story IMFs are designed according to KBC 2009. The connection is modeled to have a drift capacity of 0.02rad, which is required for IMF connections. This study shows that the probability of collapse increases with an increase in the height of the frame. Nine- and twelve-story frames did not satisfy the requirement specified in ATC-63.

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

Cyclic Loading Test on Connection of SRC Column-Composite Beam Consisting of H-Section and U-Section Members (SRC기둥-H형단면과 U형단면으로 구성된 합성보 접합부의 반복가력실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Kim, Jin Won;Ryu, Hong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2014
  • In this study, connection of steel reinforced concrete(SRC) column and composite beam which consists of H-section and U-section members were tested under cyclic loading. An essential point of the composite beam is the structural performance of welded joint between the H-section and the U-section members. To improve the structural performance of joint of two beam members, vertical stiffeners, trapezoidal stiffeners, and top bars were used. Five full-scaled specimens were designed to study the effect of a number of parameters on cyclic performance of connections such as H-section beam size($H-500{\times}200{\times}10{\times}16$, $H-600{\times}200{\times}11{\times}17$), the presence of stiffeners and top bars, and the presence of no weld access hole(WAH) method. Based on the test results, deformation capacity of the specimens with H-500 series beam and H-600 series beam were 4% and 3% rotation angle, which is the requirement for the Special Moment Frame and Intermediate Moment Frame(IMF), respectively. Test result showed that deformation capacity of connection with stiffeners and top bars is greater than that of connection without stiffeners and top bars. Finally, energy dissipation capacity and strain profile of specimens were summarized.