• Title/Summary/Keyword: 모드 중첩법

Search Result 63, Processing Time 0.024 seconds

Analytic solution of TE plane-wave scattering from rectangular grooves (네모난 금속홈에 의한 TM 평면파 산란의 해석적 해)

  • Cho, Yong-H.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.175-178
    • /
    • 2005
  • TM plane-wave scattering from finite rectangular grooves in a conducting plane is systematically analyzed with the overlapping T-block method. Multiple rectangular grooves are divided into several overlapping T-blocks to obtain the fast CPU time, CAD applicability, and wide versatility. The scattered fields are obtained in simple closed forms including a fast-convergent integral.

  • PDF

Virtual Fatigue Analysis of a Small-sized Military Truck Considering Actual Driving Modes (실 주행조건을 고려한 군용 소형트럭의 가상 내구해석)

  • Suh, Kwon-Hee;Lim, Hyeon-Bin;Song, Bu-Geun;Ahn, Chang-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.120-127
    • /
    • 2008
  • A military vehicle undergoes normal to extreme driving conditions, which consequently induce the fatigue and fracture of cabin and frame. So, it is important to estimate the fatigue life of two components at an initial design stage. In this paper, Modal Superposition Method(MSM) was applied to evaluate the durability performance of a small-sized military truck. For reliable durability analysis, a Virtual Test Lab(VTL) Model was established by correlation with experimental results. These data were extracted from actual driving test, modal test, and SPMD(Suspension Parameter Measuring Device) test. This process shows that Virtual Fatigue Analysis can be a useful approach in the development of military vehicles as well as commercial vehicles.

Development of Simulation System for Front Attachment of Excavator (굴삭기 작업장치의 해석시스템 개발)

  • Gwon, Sun-Gi;Park, Hyeong-Jin;Kim, Hyeong-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1401-1410
    • /
    • 1996
  • This paper present a method to predict fatigue life of a construction equipment performing static stress analysis and dynamic stress analysis using the computer simulation for proto and pilot type model. The parameter of design variable is used for finite elemt modeling of a excavator. Desinger can design reliable product and shorten lead time by using "Simulation System for Front Attachment of Excavator" develped in this study.his study.

Modeling of the Maglev Vehicle Running over an elevated Guideway Using Flexible Multi-body Dynamics Based on the Model Superposition Method (모드중첩법을 이용한 자기부상열차/유연궤도 동적 모델링 연구)

  • Han, Hyung-Suk;Lee, Jong-Min;Kim, Young-Joong;Kim, Dong-Seong;Kim, Sook-Hee;Lee, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.229-238
    • /
    • 2006
  • In general, the Maglev vehicle is run over an elevated guideway consisting of steel or concrete structure. Since the running behavior of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluating the dynamics of both the vehicle and guideway. A new method based on flexible multibody dynamics is proposed to model the Maglew vehicle. This method combines the levitation controller, vehicle, and guideway into a coupled model To verify the method, an urban transit is analyzed using the method and discussions are carried out.

  • PDF

Damage Curves for the Shear Building to the Local Impact (국부충격에 의한 전단건물의 손상곡선)

  • Lee, Sang-Ho;Hwang, Sin-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 2004
  • The damage curves for the 2-story shear building to the impulsive rectangular loads were established with the peak load and Impulse ratio producing the critical displacement. The convolution integrations with the Impulse response matrix and the loads were used to find the responses of the building. The impulse response matrix required in the calculations of the convolution integration were found with the mode superposition method It is shown from the established damage curves that the responses of the top and bottom floor are sensitive to the magnitude and the impulse of the loads respectively.

Dynamic Simulation for High-speed Pantograph and Overhead-line using a Vibration Mode Superposition Method (모드중첩법을 이용한 고속용 팬터그래프와 전차선의 동적 상호작용 시뮬레이션)

  • Cho, Yong-Hyeon;Lee, Ki-Won;Park, Hyun-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.494-497
    • /
    • 2004
  • A dynamic simulation for a high-speed pantograph-overheadline has been performed using mode superposition method to predict contact forces between pantograph and overheadline. We can deal with non-linear dampers of the pantograph and pre-sag of overhead-line for the simulation. But, we can not consider slackness of dropper in the overhead-line. According to the simulation results, the contact forces and displacements are reasonably predicted, compared with other foreign simulation results.

  • PDF

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

Bridge-Vehicle interaction Analysis of Suspension Bridges Considering the Effects of the Shear Deformation (전단변형효과를 고려한 현수교의 교량-차량 상호작용 해석)

  • Kim, Moon-Young;Lim, Myoung-Hun;Kwon, Soon-Duck;Kim, Ho-Kyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.1-11
    • /
    • 2004
  • In the previous study(1), the finite element method was used for the vertical vibration analysis of suspension bridge considering the effects of the shear deformation and the rotary inertia under moving load. This study firstly performs the eigenvalue analysis for the free vertical vibration of suspension bridge using FEM analysis. Next the equations of motion considering interaction between suspension bridge and vehicles/train are derived using mode superposition method. And dynamic analysis was performed using the Newmark $\beta$ Method. Finally through the numerical examples, the dynamic responses of bridges by this study are investigated.

Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber (공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석)

  • Hong, Sa-Young;Kyoung, Jo-Hyun;Kim, Byoung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.