• Title/Summary/Keyword: 모드 불안정성

Search Result 79, Processing Time 0.031 seconds

Low frequency Instability in Hybrid Rocket Post-chamber Configuration (연소실 형상 변화에 의한 하이브리드 로켓의 저주파수 연소불안정)

  • Park, Kyungsu;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Hybrid rocket displays many different low frequency pressure oscillations during combustion. Thermal lag between solid and gas phase is the primary mechanism to trigger low frequency pressure oscillations of around 10Hz, and Helmholtz or $L^*$ mode also produces other types of low frequency oscillations above 10 Hz which is associated with the change in combustion volume. Since the flow characteristics in hybrid rocket is very similar to those in solid rocket combustion, it is not surprising to observe similar pressure oscillation behaviors. Experimental test shows that combustion pressure suddenly turns into to a big amplitude oscillation around 10Hz then followed by returning to an original pressure level after a short period combustion. Further investigations show that this instability is independent of the change in O/F ratio at all. One of the possible candidates is the vortex shedding dynamics over the backward step in the post combustion chamber. It is required to investigate the low frequency oscillation mechanism in the future study.

The Nonlinear Combustion Instability Prediction of Solid Rocket Motors (고체로켓모터의 비선형 연소 불안정성 예측 기법)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye;Um, Won-Seok;Seo, Seonghyeon;Lee, Do-hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2016
  • The prediction of combustion instability is important to avoid an obvious threat to the structural safety and the motor performance because it affects the apparent response function of the propellant, the burning rate, and a mean flow Mach number at the local surface. The combustion instability occurs in case acoustic waves were coupled with the combustion/flow dynamic frequency. In this paper, an acoustic instability model is derived from the nonlinear wave equation for analysing acoustic dynamics in solid rocket motors. The chamber pressure and burning rate effects on combustion instability have been investigated.

Study on Unsteady Flow Field around Rectangular Cylinders using Proper Orthogonal Decomposition (POD) (POD를 이용한 구조기본단면 주변 비정상흐름장 특성에 관한 연구)

  • Lee, Jae-Hyung;Matsumato, Masaru
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2008
  • In this study, the effect of an unsteady flow field around a body of aerostatic/aerodynamic forces were investigated using rectangular cylinders (B/D = 2, 3, 4, 5). Proper orthogonal decomposition (POD) was introduced to the analysis of the fluctuating pressure field that was measured on the stationary/oscillatory B/D=4 rectangular cylinder, and the characteristics of the proper functions with flow patterns were identified. In addition, the physical decoupling and interactions in the different co-existing flow patterns were investigated through POD. The comparison with the identified proper function associated with a particular flow pattern revealed that the Karman vortex is almost not affected by the separation bubble, but that the Karman vortex considerably interferes in the development of the separation bubble around the trailing edge. It can be considered that the Karman vortex induces the increment of the curvature of the substantial separated flow.

Modulation Instability in Dispersion and Gain Managed Fibers (이득과 분산을 조절한 광섬유의 변조 불안정성 분석)

  • Choi, Byung-Hoon;Kim, Sang-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.93-99
    • /
    • 2007
  • We investigated analytically and numerically the occurrence of modulation instability in fibers with periodic changes both in dispersion and gain. Previously, it has been known that the modulation instability is suppressed in dispersion managed solitons where dispersion is managed in such a way that the local dispersion alternates between the normal and the anomalous regimes. In this work, we enhanced the advantage of the dispersion management scheme by additionally introducing proper gain/loss profiles in fibers. The gain/loss profile is given by $\Gamma(z)=0.5/D(z)*(dD/dz)$, where D(z) represents the dispersion profile. The fundamental gain spectra of the modulation instability in the dispersion and gain managed fibers have been derived analytically and confirmed by numerical calculation. Our investigation reveals that in the dispersion and gain fibers the modulation instabilities are always much more suppressed compared to the case with only dispersion managed. In practical dispersion management schemes, dispersion profiles show discontinuity. and thus. the corresponding gain/loss profiles tend to be finite. In these cases, the gain/loss profiles were approximated by lumped gains/losses of finite values. Our numerical calculations confirm that this approximation also works well.

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.640-647
    • /
    • 2007
  • This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth (선편광된 10 GHz 선폭의 1 kW급 20/400-㎛ 이터븀 첨가 광섬유 레이저)

  • Jung, Yeji;Jung, Minwan;Lee, Kangin;Kim, Taewoo;Kim, Jae-Ihn;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.120-125
    • /
    • 2021
  • We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.

Percutaneous Radiofrequency Therapy of Benign Bone Tumors in the Femoral Head (대퇴골두 부위에 발생한 양성 골 종양에 대한 경피적 고주파치료 (증례보고))

  • Seo, Jai-Gon;Kim, Eung-Soo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.9 no.1
    • /
    • pp.84-92
    • /
    • 2003
  • Purpose: To report two cases of bone tumors other than osteoid osteoma in the proximal femur and treated with percutaneous high frequency radioablation method. Cases: We reviewed two cases with intracortical chondroma and enchondroma in the femoral head retrospectively. The patient with intracortical chondroma was a thirty one year old woman and had suffered right hip pain of 1 year duration. The lesion was located in the head of right femur and treated with CT guided percutaneous high frequency radioablation after needle biopsy under general anesthesia. The symptom was gone immediately after the procedure and was discharged postop. 1 day. 15 months has passed without symptom recurrence. Second case having enchondroma, was 56 year old woman complaining of gluteal area pain for 3 months. Radiologic evaluation showed osteolytic lesion with sclerotic rim on the inferior portion of the left femoral head. She received a same therapy with CT guided radiofrequency ablation following needle biopsy. She reported dramatic pain relief after the procedure and was discharged postop. 1 day. No symptom has occurred for 3 months until now. Conclusion: We present 2 cases of bone tumor occurred in the hip joint area other than osteoid osteoma which were treated with CT guided radiofrequency ablation.

  • PDF

Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) (고출력 광섬유 레이저 기술의 현황 및 전망)

  • Kwon, Youngchul;Park, Kyoungyoon;Lee, Dongyeul;Chang, Hanbyul;Lee, Seungjong;Vazquez-Zuniga, Luis Alonso;Lee, Yong Soo;Kim, Dong Hwan;Kim, Hyun Tae;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2016
  • Over the past two decades, fiber-based lasers have made remarkable progress, now having reached power levels exceeding kilowatts and drawing a huge amount of attention from academy and industry as a replacement technology for bulk lasers. In this paper we review the significant factors that have led to the progress of fiber lasers, such as gain-fiber regimes based on ytterbium-doped silica, optical pumping schemes through the combination of laser diodes and double-clad fiber geometries, and tandem schemes for minimizing quantum defects. Furthermore, we discuss various power-limitation issues that are expected to incur with respect to the ultimate power scaling of fiber lasers, such as efficiency degradation, thermal hazard, and system-instability growth in fiber lasers, and various relevant methods to alleviate the aforementioned issues. This discussion includes fiber nonlinear effects, fiber damage, and modal-instability issues, which become more significant as the power level is scaled up. In addition, we also review beam-combining techniques, which are currently receiving a lot of attention as an alternative solution to the power-scaling limitation of high-power fiber lasers. In particular, we focus more on the discussion of the schematics of a spectral beam-combining system and their individual requirements. Finally, we discuss prospects for the future development of fiber laser technologies, for them to leap forward from where they are now, and to continue to advance in terms of their power scalability.