• 제목/요약/키워드: 모두의 이웃

검색결과 102건 처리시간 0.027초

한국어 시각 단어 재인에서 음운, 철자이웃 크기 효과 (The Phonological and Orthographic Neighborhood Effect in Korean Visual Word Recognition : LDT study & fMRI study)

  • 권유안;박창수;남기춘
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2006년도 춘계학술대회
    • /
    • pp.47-51
    • /
    • 2006
  • 본 실험은 한국어 심성어휘집의 표상 정보가 음운정보로 이루어져 있는지, 철자정보로 이루어져 있는지 알아보기 위해 실시되었다. 실험자극은 한국어의 2음절 단어 중 음운변화(자음동화)를 겪는 단어(예: 국민)를 사용하였으며, 각 조건은 철자이웃이 크며 음운 이웃이 큰 단어 조건(O+P+), 철자이웃이 크고 음운이웃은 작은 단어 조건(O+P-), 철자이웃은 작고 음운이웃이 큰 단어 조건(O-P+), 철자이웃과 음운이웃 모두가 작은 조건(O-P-)이었다 실험 1에서 어휘판단 과제를 실시한 결과, 음운이웃 크기와 철자이웃 크기간의 상호작용이 나타났다. 실험2는 동일한 실험자극을 사용한 fMRI 연구를 수행하였다. 실험2 결과 음운처리에 관련된 뇌영역의 활성화가 나타났다. 본 연구결과는 한국어의 경우 심성어휘집이 음운정보로 이루어져 있음을 시사한다.

  • PDF

게이미피케이션 앱의 의사소통 효과: 앱 <모두의 이웃>을 중심으로 (Communication Effects of Gamification App : Focused on )

  • 강승헌;정지용;박성진;김상균
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권7호
    • /
    • pp.1245-1251
    • /
    • 2018
  • 4차 산업혁명 시대를 살아가는 인재의 핵심역량 중 하나로 의사소통 능력이 강조되고 있다. 하지만 개인 학습 위주의 전통적 교육 시스템에서는 충분한 의사소통의 기회를 제공하지 못하고 있다는 의견이 지배적이다. 본 논문은 모바일 앱을 활용하여 의사소통을 활성화하는 방법을 제안한다. 본 연구에서는 <모두의 이웃> 모바일 앱을 개발하여, 대학생들이 이틀 동안 이 앱을 활용하게 한 후에 설문조사를 통해 의사소통 관련 효과를 분석하였다. 결과를 보면 재미와 의사소통에 대하여 모두 효과가 있었다. 실험 결과를 바탕으로 본 논문에서 제안한 앱이 사람들 간의 소통 활성화, 관심 증대 및 협력적 사고력 향상에 기여할 것으로 기대한다.

대규모 데이터를 위한 k-최근접 이웃 학습 기반의 효율적인 협력적 여과 기법 (An Efficient Collaborative Filtering Method Based on k-Nearest Neighbor Learning for Large-Scale Data)

  • 전광성;황규백
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.376-380
    • /
    • 2008
  • 사회의 복잡화와 인터넷의 성장으로 폭발적으로 늘어나고 있는 정보들을 사용자가 모두 검토한 후 여과하기는 어려운 일이다. 이러한 문제를 보완하기 위해서 자동화된 정보 여과 기술이 사용되는데, k-최근접 이웃(k-nearest neighbor) 알고리즘은 그 구현이 간단하며 비교적 정확하여 가장 널리 쓰이고 있는 알고리즘 중 하나이다. k 개의 최근접 이웃들로부터 평가값을 계산하는 데 흔히 쓰이는 방법은 상관계수를 이용한 가중치에 기반하는 것이다. 본 논문에서는 이를 보완하여 대규모 데이터에 대해서도 속도는 크게 저하되지 않으며 정확도는 대폭 향상시킬 수 있는 방법을 적용하였다. 또한, 최근접 이웃을 구하는 거리함수로 다양한 방법을 시도하였다. 영화추천을 위한 실제 데이터에 대한 실험 결과, 속도의 저하는 미미하였으나 정확도에 있어서는 크게 향상된 결과를 가져올 수 있었다.

  • PDF

원환체형 모집단 유전자 알고리즘 (Genetic Algorithm with Torus-Form Population)

  • 강태원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.9-11
    • /
    • 2000
  • 전형적인 단순 유전자 알고리즘은 한 개의 모집단으로 구성되며, 진화 과정이 거듭되면 모집단의 개체들은 한 개의 전역해로 수렴하게 된다. 그러나, 많은 문제들은 여러 개의 최적해를 가질 수 있으며, 그것들 모두를 찾는 것이 중요한 경우가 많다. 이 논문에서는 모집단을 원환체(Torus)로 구성하고 개체에 이웃의 개념을 부여하여 모집단이 최적해 집단으로 수렴하는 유전자 알고리즘의 변형을 연구한다. 제안한 방법은 개체사이에 이웃이라는 개념을 부여함으로써 다수의 해를 동시에 찾는다는 생각을 넘어서 다양한 변형 유전자 알고리즘에 대한 새로운 모델이 될 것으로 기대된다.

  • PDF

픽셀간의 칼라공간에서의 거리와 이웃관계를 고려하는 클러스터링을 통한 칼라영상 분할 (Color Image Segmentation based on Clustering using Color Space Distance and Neighborhood Relation Among Pixels)

  • 이화정;김황수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권10호
    • /
    • pp.1038-1045
    • /
    • 2000
  • 본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 칼라영상의 한 픽셀은 칼라정보(R.G.B)와 위치정보(x.y)를 가진다. 대개의 칼라공간에서의 클러스터링방법은 픽셀을 (R,G,B)공간으로 변환후 (R,G,B)공간상의 분포만을 이용하지만 여기서는(R,G,B)와 (x.y)모두를 사용하여 클러스터링함으로 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 중력 클러스터링(gravitational clustering)을 사용하였다. 이 방법은 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. 중력 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법(K-means)에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.

  • PDF

승무일정계획의 최적화를 위한 이웃해 탐색 기법과 정수계획법의 결합 (A Hybrid of Neighborhood Search and Integer Programming for Crew Schedule Optimization)

  • 황준하;류광렬
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.829-839
    • /
    • 2004
  • 정수계획법에 기반 한 기법들은 다양한 승무일정계획 최적화 문제를 해결하는 데 매우 효과적인 것으로 알려져 있다. 그러나 정수계획법은 대상 문제의 제약조건 및 목적함수가 모두 선형적으로 표현되어야만 적용이 가능하다는 단점이 있으며 문제의 규모가 클 경우 과도한 수행 시간과 메모리 자원을 요구하게 된다. 반면 이웃해 탐색 기법과 같은 휴리스틱 탐색 기법은 대상 문제의 제약조건이나 목적함수의 형태에 관계없이 쉽게 적응이 가능하다. 그러나 이웃해 탐색 기법은 복잡한 탐색 공간을 탐색할 경우 국소 최적해에 도달한 후 국소 최적해로부터 쉽게 빠져나오지 못하는 경우가 많다. 본 논문에서는 이웃해 탐색 기법과 정수계획법의 장점을 효과적으로 결합하기 위한 방안을 제시하고 있으며 실제 운행중인 지하철 승무일정계획 문제에 적용해 봄으로써 대규모 승무일정계획 최적화 문제에 성공적으로 적용될 수 있음을 확인하였다.

Balanced Canopy Clustering에 기반한 일반적 k-인접 이웃 그래프 생성 알고리즘 (A Generic Algorithm for k-Nearest Neighbor Graph Construction Based on Balanced Canopy Clustering)

  • 박영기;황혜수;이상구
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권4호
    • /
    • pp.327-332
    • /
    • 2015
  • k-인접 이웃 그래프는 모든 정점에 대한 k-NN 정보를 나타내는 데이터 구조로서, 많은 정보검색 및 추천 시스템에서 k-인접 이웃 그래프를 활용하고 있다. 현재까지 k-인접 이웃 그래프를 생성하는 다양한 방법들이 제안되었지만, 다음의 두 조건을 동시에 만족하는 알고리즘은 제안되지 못했다: (1) 특정유사도 척도를 가정하지 않는다. (2) 정점 또는 차원의 수가 증가하더라도 정확도가 감소하지 않는다. 본 논문에서는 balanced canopy clustering을 이용하여 위 두 조건을 모두 만족하는 k-NN 그래프 생성 알고리즘을 제안한다. 실험 결과, 정점과 차원의 수에 상관없이 기본 알고리즘에 비해 5배 이상 빠르면서 약 92%의 정확도를 유지했다. 본 알고리즘은 새로운 유사도 척도를 사용하거나, 높은 정확도를 보장해야 할 경우 효과적으로 사용될 수 있다.

GIS와 공간 데이터마이닝을 이용한 교통사고의 공간적 패턴 분석 - 서울시 강남구를 사례로 - (A Study on Spatial Patterns of Traffic Accidents using GIS and Spatial Data Mining Methods: A Case Study of Kangnam-gu, Seoul)

  • 이건학
    • 대한지리학회지
    • /
    • 제39권3호
    • /
    • pp.457-472
    • /
    • 2004
  • 본 연구의 목적은 GIS와 공간 데이터마이닝 방법을 이용하여 교통사고의 공간적 패턴을 살펴보고 이웃한 공간 객체와의 공간적 연관성을 탐색하는 것이다. 이를 위하여 서울시 강남구 교통사고 데이터를 이용하여 공간적 경향 분석, 군집 분석 및 군집의 특성 기술, 이웃한 공간 객체와의 연관 분석을 실시하였다. 그 결과, 강남구의 교통사고는 특징적인 4개의 군집 유형을 통해 분류될 수 있으며, 각 군집별로 차별적인 특성들을 보여주고 있다. 또한, 교통사고의 발생 위치와 이웃한 공간 객체들과의 연관성에서는 공간 객체들의 개념수준이나 공간적 관계의 수준에 따라 다양한 규칙들이 발견되었다. 이러한 규칙들은 모두가 유의미하거나 흥미로울 수는 없지만, 맥락에 따라 다양하게 해석될 수 있으며, 보다 심화된 인구를 위한 새로운 가설들로 사용될 수 있을 것이다.

Normalized Cuts을 이용한 그래프 기반의 모션 분할 (Graph-based Motion Segmentation using Normalized Cuts)

  • 윤성주;박안진;정기철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.522-526
    • /
    • 2008
  • 모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 사용되며, 영화나 게임과 같은 콘텐츠에서 자주 활용되고 있다. 하지만 모션 캡쳐 장비가 고가이기 때문에 한번 입력받은 데이터를 모션별로 분할하고 상황에 맞게 재결합하여 사용할 필요가 있으며, 입력 데이터를 모션별로 분할하는 것은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 데이터를 자동으로 분할하기 위한 연구들이 다양하게 시도되고 있다. 기존의 연구들은 크게 전역적 특성에 대한 고려없이 이웃하는 프레임만을 고려하는 온라인 방식과 데이터를 전역적으로 고려하나 이웃하는 프레임 사이의 관계를 고려하지 않는 오프라인 방식으로 나누어진다. 본 논문에서는 온라인과 오프라인 방식을 병합한 그래프 기반의 모션 분할 방법을 제안한다. 분할을 위해 먼저 모션데이터를 기반으로 그래프를 생성하며, 그래프는 이웃하는 각 프레임사이의 유사도뿐만 아니라 시간축을 기반으로 일정시간내의 프레임들의 유사도를 모두 고려하였다. 이렇게 생성된 그래프를 분할하기 위해 분할된 모션내의 유사도 합을 최소화하고 각 모션간의 유사도는 최대화할 수 있는 normalized cuts을 이용하였다. 실험에서 제안된 방법은 기존의 오프라인 방식 중 하나인 GMM과 온라인 방식 중 하나인 국부최소값 분할 방법보다 좋은 결과를 보였으며, 이는 각 프레임 사이의 유사도뿐만 아니라 일정시간내의 유사도를 전역적으로 고려하기 때문이다.

  • PDF