• Title/Summary/Keyword: 모델 제어

Search Result 5,472, Processing Time 0.039 seconds

A Scheme for Implementing control Panel of Central control-Based Microcomputer with Microprocessor (중앙 집중 제어용 마이크로컴퓨터의 제어반을 마이크로프로세서로 구성하는 방안)

  • 박하인;진달복
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.66-74
    • /
    • 1985
  • An idea is presented in this paper that control panel be implemented with a ${\mu}$-processor instead of interrupt based logic circuits. To prove that the idea is reasonable, a ${\mu}$-computer controlled traffic light control system is chosen as a model, and its control panel is imple-mented witll a f-processor. The result is that the microprocessor-based control panel performs its function very well.

  • PDF

Output Feedback Robust $H^infty$ Control for Uncertain Fuzzy Dynamic Systems (불확실성을 갖는 퍼지 시스템의 출력궤환 견실 $H^infty$ 제어)

  • Lee, Kap-Lai;Kim, Jong-Hae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.15-24
    • /
    • 2000
  • This paper presents an output feedback robust H$\infty$ control problem for a class of uncertain nonlinear systems, which can be represented by an fuzzy dynamic model. The nonlinear system is represented by Takagi-Sugeno fuzzy model, and the control design is carried out on the basis of the fuzzy model. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H$\infty$ controllers are given in terms of linear matrix inequalities(LMIs). Constructive algorithm for design of robust H$\infty$ controller is also developed. The resulting controller is nonlinear and automatically tuned based on fuzzy operation.

  • PDF

Design of Robust Fuzzy Controller for Load-Frequency Control of Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 전력 계통의 부하 주파수 제어를 위한 강인한 퍼지 제어기 설계)

  • Joo, Young-Hoon;Jeo, Sang-Won;Kwon, Oh-Sin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2000
  • A new robust load-frequency control methodology is proposed for nonlinear power systems with valve position limits of the governor in the presence of parametric uncertaines. The TSK fuzzy model is adopted and formulated for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stabilitry is presented in the sense of lyapunov for the TSK model with parametric uncertainties. The intekkigent digital redesign technique for the uncertain power systems is also studied. The effectiveness of the robust digital fuzzy controller disign mothod is demonstrated through a numerical simulation.

  • PDF

Observer-based decentralized fuzzy controller design of nonlinear interconnected system for PEMFC (고분자 전해질 연료전지 시스템을 위한 비선형 상호결합 시스템의 관측기 기반 분산 퍼지 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.423-429
    • /
    • 2011
  • This paper deals with the observer-based decentralized fuzzy controller design for nonlinear interconnected system for PEMFC. The nonlinear interconnected system is represented by a Takagi-Sugeno (T-S) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy observer and the decentralized fuzzy controller are designed. The stability condition of the closed-loop system with the proposed controller is represented to the linear matrix inequality (LMI) form, and the observer and control gain s are obtained by LMI. An example is given to show the verification discussed throughout the paper.

Observer-Based Digital fuzzy Controller Design Using Digital Redesign (디지털 재설계를 이용한 관측기 기반 디지털 퍼지 제어기 설계)

  • Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • This paper concerns a design methodology of observer-based output-feedback digital controller for Takagi-Sugeno(TS) fuzzy systems using intelligent digital redesign (IDR). The term of IDR involves converting an analog fuzzy-mode-based controller into an equivalent digital one in the sense of state-matching. The considered IDR problem is viewed as convex minimization problems of the norm distances between linear operators to be matched. The stability condition is easily embedded and the separations principle is explicitly shown.

A Position Estimation of Quadcopter Using EKF-SLAM (EKF-SLAM을 이용한 쿼드콥터의 위치 추정)

  • Cho, Youngwan;Hwang, Jaeyoung;Lee, Heejin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.557-565
    • /
    • 2015
  • In this paper, a method for estimating the location of a quadcopter is proposed by applying an EKF-SLAM algorithm to its flight control, to autonomously control the flight of an unmanned quadcopter. The usefulness of this method is validated through simulations. For autonomously flying the unmanned quadcopter, an algorithm is required to estimate its accurate location, and various approaches exist for this. Among them, SLAM, which has seldom been applied to the quadcopter flight control, was applied in this study to simulate a system that estimates flight trajectories of the quadcopter.

Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control (준능동 진동 제어를 위한 MR 감쇠기의 동적 모델링을 통한 특성분석)

  • Heo, Gwang-Hee;Jeon, Seung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.61-69
    • /
    • 2013
  • This research is aimed to evaluate characteristics and dynamic modeling of MR damper for semi-active vibration control. A MR damper of semi-active type was designed and made for the purpose of controlling the vibration of a real-size model structure. Usually a semi-active control system equipped with a MR damper requires a dynamic model which expresses numerical data about the damping capacity and dynamic characteristics generated by a MR damper. To fulfil the requirement, a Power model and a Bingham model were particularly employed among many dynamic models of MR damper. Those models being contrasted with other ones, a dynamic test was carried out on the developed MR damper. In the test, excitation frequencies were conditioned to be 0.15 Hz, 1.0 Hz, and 2.0 Hz, and three different currents were adopted for each frequency. From these test results, it was found that displacement affected control capacity of the MR damper. The test results led to the identification of model variables for each dynamic model, on the basis of which a force-speed relation curve and expected damping force were derived and contrasted to those of the developed MR damper. Therefore, it was proven that the MR damper designed and made in this research was effective as a semi-active controller, and also that displacement of 2mm at minimum was found to be secured for vibration control, through the test using various displacements.

Study on a Propulsion Control of the Roller Coasters Train based on Air Cored Linear Synchronous Motor (공심형 선형동기전동기 기반의 궤도열차 추진제어에 관한 연구)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8187-8194
    • /
    • 2015
  • To accelerate a heavy roller coaster train with over 1G force, a lot of thrust is required and linear synchronous motor(LSM) as propulsion method is suitable for this kind of system. To increase the propulsion efficiency of LSM, precise and real-time position information of vehicle is required for accurate phase control. However, the discontinuous position information with relatively long time interval is usually transmitted from the hall-sensors on the track every magnet length. In this paper, the basic motor model based on traditional dq-axis equations is described and the motor dynamic model is produced by considering the cogging force and friction loss. To improve the position accuracy, the position estimator is also proposed for LSM control system. Simulations were performed to check the characteristics of the torque control system which includes the position estimator based on the motor model. Simulation results based on the linearized model show that this control system has an enough bandwidth and phase margin and the executed algorithm achieves an ideal effect to follow the real-time position signal. Therefore, the feasibility of position estimator is also confirmed.

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

A Study on Control System Cyber Security Education & Training Method (제어시스템 사이버 보안 교육훈련 방안 연구)

  • Kim, Kyeong-Ho;Maeng, YounJae;Jang, MoonSu;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.645-656
    • /
    • 2019
  • As the number of cyber threats to control systems increases, the need for control system cyber security is also increasing. Currently, various cyber security related education and control system education are being conducted. However, it does not fully reflect the characteristics of the control system and the characteristics of the participants. In this paper, we propose a training system and technique to enhance the control system cyber security capability. To this end, we analyze the limitations of existing security education. Based on the results, we develop a control system training environment model based on the IEC62443 Standard and develop an ARCH based training method.