현재 국내뿐만이 아니라 전세계적으로 서비스 로봇의 수요가 늘어가고 있다. 이중에 서빙로봇은 그 성장 속도가 가파르게 올라가고 있다. 이에 국내의 다양한 기업은 여러 가지 모델의 서빙로봇을 출시하고 있다. 현재 출시되고 있는 모델의 경우 어느정도 자율주행이 가능하고 적재하중도 좋은 장점이 있으나, 실 사용에 있어서 스펙이 맞이 않을뿐 아니라, 크기와 가격에 비해 부족한 기능과 운행에 있어 사람의 도움이 필수적으로 필요하단 한계점이 있다. 이 한계점을 극복하여 매장운영의 효율을 극대화 하기위한 서빙로봇을 개발하고자 한다. 아두이노를 활용한 스마트 서빙로봇에서는 다양한 센서와 모듈을 이용해 자동화 시켜 여러 매장환경에서 최적의 행동을 취할 수 있다. 이 서빙로봇은 기존의 문제점을 해결하고 발전시켜 영업자로 하여금 효율적으로 매장울 운영할수있게 한다.
연구목적: 생활안전 예방서비스 앱에서 신고되는 이미지를 AI를 사용하여 실시간으로 위험 카테고리를 자동으로 분류하여 사용자에게 편리한 위험신고를 가능하게 하는 것을 목적으로 한다. 연구방법: 인터넷으로 상호연결되는 생활안전 예방서비스 플랫폼, 생활안전 예방서비스 앱, AI 모델 서빙 서버와 sftp 서버로 구성되는 시스템을 통하여 신고된 생활안전 이미지를 실시간으로 자동분류하며, 이때 사용되는 AI모델 생성을 위한 AI 학습 알고리즘도 개발하였다. 연구결과: 이미지를 실시간으로 AI 처리하여 자동으로 분류할 수 있게 되어, 신고자가 생활안전 관련 사항을 보다 편리하게 신고할 수 있게 되었다. 결론: 본 논문에서 제시하는 AI 이미지 자동분류 시스템은 90% 이상의 분류 정확도로 신고 이미지를 실시간으로 자동분류하여 신고자가 간편하게 생활안전 관련 이미지를 신고할 수 있게 되었으며 향후 생활안전 예방서비스 앱의 사용자의 증가에 따라 더욱 빠르고 정확한 AI 모델 개발 및 시스템 처리용량 향상이 필요하다.
의료분야 인공지능 기술이 분석과 알고리즘 개발에 중점을 두었으나 점차 제품으로 서비스하기 위한 Web 애플리케이션 개발로 변화되고 있다. 본 연구는 복부 CT 영상에서 요로결석(Urinary Stone) 분할모델과 이를 기반으로 한 인공지능 웹 애플리케이션에 대해 기술한다. 이를 구현하기 위해 의료영상 분야에서 이미지 분할을 목적으로 제안된 End-to-End 방식의 Fully-Convolutional Network 기반 모델인 U-Net을 사용하여 모델을 개발하였다. 그리고 Python 기반의 Flask라는 마이크로 웹 프레임워크를 사용하여 AWS 클라우드 기반 웹 애플리케이션으로 개발하였다. 끝으로 모델 서빙으로 요로결석 분할모델이 예측한 결과를 인공지능 웹 애플리케이션 서비스 수행 결과로 보인다. 제안한 AI 웹 애플리케이션 서비스가 선별 검사에 활용되기를 기대한다.
셀룰러 네트워크를 운용하는데 드는 에너지의 대부분은 기지국에 의해서 소비되므로 에너지 효율적인 셀룰러 네트워크를 위하여 기지국의 송신 전력을 줄이는 것이 필요하다. 본 논문에서는 셀룰러 네트워크의 에너지 효율을 향상시키기 위한 목적으로 플로킹(flocking) 모델에 기반한 분산 송신전력제어 알고리즘을 제안한다. 새 무리에서 각각의 새가 자신의 속도를 인접한 이웃 새들의 평균 속도로 맞춰 날아가는 것과 같이, 제안 방안에서는 각 셀의 단말의전송률이 인접 셀의 같은 채널을 사용하는 단말의 평균 전송률과 같도록 서빙 기지국의 송신 전력을 제어한다. 모의실험 결과 제안한 분산 송신전력제어 알고리즘은 플로킹 모델과 같은 수렴 속성을 가지며, 셀 간 간섭이 증가함에 따라 낮은 아웃티지 확률을 유지하면서도 기지국의 전력 소모를 효과적으로 줄일 수 있음을 보여준다. 이를 통하여 제안 방안은 기지국 수가 20개 이상일 때 셀룰러 네트워크의 에너지 효율을 기존 방식 대비 두 배 이상 향상시킨다.
이 연구에서는 조리 전공과 로봇 기술을 융합함으로써 소프트웨어 분야가 아닌 조리 전공 학생의 코딩 능력을 기를 수 있는 융합부전공 교육 모델을 제안한다. 이 교육 모델은 4차산업혁명 기술 발전 추세를 따르는 것이고, 비전공 학생을 소프트웨어 전문가로 성장시키는 기능이 있어 그 의미가 크다고 할 수 있다. 그러나, 조리 전공과 로봇 기술은 기술적으로 거리가 있기 때문에 융합부전공 설계에 어려움이 있다. 이 어려움을 극복하기 위하여 로봇을 이용한 조리, 디저트 제작, 바리스터 작업, 자동 서빙 등의 교육 주제를 체계적으로 구성해서 조리 전공 학생들이 전공적 흥미를 유지할 수 있도록 연계부전공을 설계하였다. 또한, 실질적인 코딩 능력을 기를 수 있게 여러 로봇을 사용하는 실습 과정이 포함되도록 하였다. 기존의 다른 분야 융합부전공과 비교하여 평가하여보니, 20%정도 개선된 교육 효과가 있는 우수한 모델로서 판단된다.
본 논문은 웹의 발달로 인하여 의료 서비스들이 기존의 Client-Server 방식의 제품에서 Web 방식의 제품으로 변경되고 있는 현대 흐름에서 인공지능 어플리케이션 또한 Web 으로 서비스 하기 위한 방법과 구현된 요로결석 AI 어플리케이션에 대해 기술한다. 이를 구현하기 위해 Python 기반의 Flask 라는 마이크로 웹 프레임워크를 사용하여 DICOM 핸들링, Pre-Processing, Mask 를 생성하고 Predict 결과를 Model Serving 을 통하여 Urinary Stone Segmentation Model 이 서비스되는 인공지능 웹 어플리케이션 동작 방식과 수행 결과를 보인다.
본 연구는 ChatGPT 서비스의 개시 이후 인공지능 혁명이라 일컬어지는 시대적 배경 속에서, 웹사이트의 제작과 인공지능의 융합을 위해 딥러닝 모델을 학습 및 구현하고자 한다. 딥러닝 모델은 수집한 3,000개의 웹페이지 이미지를 구성요소와 레이아웃 분류체계 기반의 데이터 가공을 통해 학습하였으며, 다음과 같은 세 가지 단계로 구분하여 진행하였다. 첫째, 인공지능 모델에 관한 선행연구를 조사하여 구현하고자 하는 모델에 가장 적합한 알고리즘을 선택하였다. 둘째, 적합한 웹페이지 및 단락 이미지를 수집하고 분류 및 가공하였다. 셋째, 딥러닝 모델을 학습시키고 서빙 인터페이스를 연동해 모델의 실제 결과를 확인하였다. 이렇게 구현된 모델은 실제 웹페이지를 구성하는 복수의 단락을 탐지하고, 단락별 규모, 요소, 특징을 분석하여 분류체계를 기반으로 의미 있는 데이터를 도출할 것이다. 이 과정은 점차 발전하여 웹페이지를 보다 정밀하게 분석할 수 있게 될 것이다. 그리고 정밀 분석기법을 역으로 설계하여, 인공지능이 완벽한 웹페이지를 자동으로 생성할 수 있는 연구의 초석이 될 것으로 기대한다.
본 연구는 국내 푸드테크 기업들의 현재 상황을 파악하기 위해 표준 산업 분류, 핵심 기술 영역, 투자 단계, 성장 과정을 중심으로 빠르게 성장하고 있는 푸드테크 스타트업을 다각적으로 분석하고, 푸드테크 스타트업인 마이셰프와 와드(캐치 테이블)를 선정하여 ERIS 모델을 활용한 사례연구를 실시하였다. 분석 결과, 푸드테크 스타트업들이 로봇공학과 인공지능을 접목한 식품 스마트 식품 유통 기술과 외식 조리 서빙로봇, 매장과 배달 중심 솔루션에 초점을 맞추고 있으며 식품과 관련된 응용 프로그램 및 플랫폼을 개발하거나 데이터베이스 및 온라인 정보 제공업이 발전하고 있음을 알 수 있었다. 푸드테크 스타트업의 창업연도, 투자단계, 누적투자유치금액 등을 분석한 결과, 4차 산업혁명에 따른 기술 혁신의 영향을 받아 2014년부터 2018년 사이에 푸드테크 스타트업이 다수 설립되었고 Series A, B 펀딩 확보 이후 라운드 펀딩을 통해 사업 규모를 확대하는 추세를 보였다. 전략적 인수 및 합병과 파산 비율이 높게 나타난 점은 푸드테크 산업에 내재된 복잡성으로 해석된다. 밀키트 제조로 성장한 마이셰프와 외식 예약 플랫폼으로 확장한 와드(캐치 테이블)의 사례연구는 푸드테크 스타트업의 성공 요인으로 작용한 기업가, 자원, 산업 및 전략적 요인들을 도출하였다. 본 연구는 푸드테크 산업의 창업자, 투자자, 정책입안자들에게 시장 동향 및 기술 변화에 맞춰 전략을 개발하고 지속 가능한 성장을 촉진할 수 있는 통찰과 방향성을 제공한다는 점에서 실무적 시사점이 있다.
식중독균의 항생제 내성은 주요 식품 안전 이슈로, 적절한 안전관리 옵션을 도출하기 위해서는 항생제 내성균의 노출평가가 필수적이다. 이에 식품섭취에 의한 항생제 내성균의 인체노출 정도를 평가하고자 확률노출모델을 이용하여 돈육식품 중 항생제 내성 S. aureus 및 생성 독소의 식이노출을 추정하였다. 시판 돈육 제품에서 S. aureus를 분리하고 주요 항생제에 대한 내성율을 분석한 결과 124개 시료에서 분리된 30주의 S. aureus는 penicillin과 ampicillin에 대해 각각 76.7%와 70.0%의 내성을 보였다. Oxacillin 내성은 6.7%였으며 vancomycin에 대해서는 내성을 나타내지 않았다. 가장 내성율이 높은 penicillin 내성 S. aureus를 대상으로 원료 중 오염도, 항생제 내성율, 작업지침 준수여부 등 변수를 이용한 집단급식 조리 돈육 불고기 섭취에 대한 확률노출평가 모델을 시뮬레이션한 결과, 조리 전 또는 서빙 전 단계에서 돈육 중 내성균의 추정 오염도는 평균 0.3 Log CFU/g이며, 보수적인 접근인 95% percentile값의 경우도 penicillin 내성 S. aureus의 알려진 독소 생성 수준보다 낮았다. 이 결과는 현재 주어진 조건에서 돈육조리식품 섭취에 의한 항생제 내성 S. aureus의 인체노출가능성이 낮으며 돈육조리식품 섭취에 의하여 penicillin 내성 S. aureus이 생성하는 독소에 노출될 가능성은 매우 낮음을 시사한다. 그러나 원료의 오염도, 조리 중 온도, 시간관리가 준수되지 않을 경우 식중독이 발생할 가능성은 증가할 수 있으므로 작업지침 등을 준수해야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.