음성합성에 있어서 음의 자연성을 합성시키는 문제는 크게 두가지로 나누어진다. 첫째는 합성음을 원음에 가깝게 구현하려는 합성방법 자체의 문제로, 언어 합성이 가지고 있는 일반적인 문제이다. 또 다른 문제는 운율에 관한 것으로 낱말 또는 문장 내에서의 운율에 따라 합성음의 자연성이 좌우된다. 이러한 운율에 따라 합성음의 자연성이 좌우된다. 이러한 운율의 조절에는 지속시간, 피치, 그리고 음의 세기 등이 이용된다. 켑스트럼을 이용하여 분석합성을 하는 경우, pole-zero 모델로 스펙트럼 포락을 근사하므로 원음에 충실하고, 필터계수와 구동정보를 분리하여 분석, 합성하므로 인위적인 운율의 조절이 용이하여 음성합성이 가지는 위의 두가지 문제를 해결하는데 적합하다고 판단된다. 본 연구에서는 켑스트럼을 이용하여 분석합성 시스템을 구성하였다. 음성 합성 과정에서, 운율 조절 파라미터중의 하나인 피치 주기의 변경에 따라 스펙트럼 포락의 왜곡에 대해 살펴보고, 왜곡을 최소화하는 방안을 제안한다.
고화질의 전산화단층촬영상을 통해 정확한 병변 검출과 진단을 할 수 있다. 이와 같은 장점 때문에 전산화단층촬영 시 방사선량을 줄이면서 영상 화질을 개선하기 위해 많은 연구가 수행되었다. 최근 전산화단층촬영상 화질을 향상시키기 위한 딥러닝 기반 기술이 개발되었고, 기존의 기술에 비해 우수한 성능을 보이고 있다. 본 연구에서는 전산화단층촬영상의 공간분해능을 향상시키기 위해 초고해상도 합성곱 신경망 모델을 사용하였으며, 초고해상도 합성곱 신경망 모델의 성능을 결정하는 초 매개 변수 변화에 따른 영상 화질을 평가하여 초고해상도 합성곱 신경망 모델에 대한 초 매개 변수의 효과를 검증하였다. Profile, 구조적 유사성 지수, 최대신호 대 잡음비 및 반치폭을 측정하여 초 매개 변수 변화에 따른 초고해상도 합성곱 신경망 모델의 성능을 평가하였다. 연구결과, 초고해상도 합성곱 신경망 모델의 성능은 epoch와 training set이 증가함에 따라 향상되었으며, 전산화단층촬영상 화질을 향상시키기 위해 learning rate 최적화가 필요하다는 사실을 확인하였다. 따라서 최적의 초 매개 변수와 함께 구현된 초고해상도 합성곱 신경망 모델은 전산화단층촬영상의 품질을 향상시킬 수 있다.
본 연구에서는 레졸수지 합성에서 부가반응 실험변수인 F/P 몰비, 촉매 wt% 및 반응온도가 페놀치환체에 미치는 영향을 2단 실험계획법을 사용하여 실험하고 실험 결과를 삼원변량분석법(ANOVA, SPSS)을 사용하여 해석하였다. 페놀치환체는 반응시간 300분에서 F/P 몰비가 높을수록, 반응온도가 낮을수록, 촉매량이 적을수록 증가하는 경향을 보였고 ortho 지향성이 있음을 확인하였다. 레졸형 페놀수지의 합성에서 페놀계 치환체의 해리반응과 메틸렌글리콜 형태의 포름알데하이드의 분율을 고려하는 Zavitsas류의 속도론 모델을 단순화시킨 기초반응 모델을 제시하고 Zavitsas류의 속도론 모델과 비교하였다. 기초반응 모델은 평균적으로 2.79%의 오차를 보였으며 Zavitsas류 모델의 오차인 3.27%와 비슷한 값을 보이는 것을 확인하였다. 따라서 본 논문에서 제시한 기초반응 모델은 레졸합성의 부가반응 속도론 연구에 적용 가능하다고 판단된다.
본 논문에서는 통계적인 방법을 이용하여 점탄성 제진재인 합성고무의 물성에 대한 변동성을 평가하는 방법을 제안하고 측정데이터를 이용하여 합성고무에 대한 평가를 수행하고 합성고무로 이루어진 고무 마운트에 대한 동특성 해석을 수행하였다. 고무 물성의 불확실성 인자로는 외기 온도의 변화와 실험 데이터의 오차 및 점탄성 물질모델의 오차를 고려하였다. 고무는 분수차 미분모델로 표현되었고, 온도의 영향은 비선형 이동계수모델을 도입하여 복소계수로 나타내어 동강성과 감쇠를 표현하였다. 이러한 물성모델을 바탕으로 고무에 대한 물성 실험데이터와 물성계수의 확률밀도함수 사이에 정의된 우도함수를 최대화하는 통계적 보정방법을 이용하여 물성모델의 물질계수들에 대한 변동성을 추정하였다. 합성고무로 이루어진 제진용 고무 마운트에 대하여 유한요소모델을 이용하여 동특성을 계산하였다. 동특성의 계산시 추정된 물성의 통계값을 적용하고 몬테카를로 해석을 통하여 동강성의 변동성을 살펴서 그 변동성이 매우 큼을 확인하였다.
본 논문에서는 합성보의 부착슬립 효과를 고려할 수 있는 유한요소 수치모델을 제안하고자 한다. 전단연결재가 설치된 슬래브와 거더 경계에서 선형 전단력-슬립 관계를 가정하여, 부착슬립 거동을 해석할 수 있는 수치모델이 구현되었다. 본 수치모델을 통하여 축 방향의 자유도를 부가하지 않고 2절점의 보 요소를 적용하여 합성보 경계에서의 슬립 거동을 고려하는 것이 가능하다. 선형 부분전단 연결이론을 토대로 한 슬립 거동의 지배방정식은 슬래브와 거더 경계에서 힘의 평형상태와 단면 내에서 상수로 가정된 곡률을 바탕으로 결정된다. 또한, 지배방정식 구성에 있어서 요소 양 절점에서의 휨 모멘트 값을 필요로 하기 때문에 유한요소 해석으로 도출되는 상수 모멘트를 요소 내에서 선형으로 분포시켰다. 제안된 수치모델을 적용한 해석결과를 기존 연구의 수치해석 결과 및 실험결과와 비교하였으며, 하중-처짐 곡선의 비교를 통하여 본 모델의 성능을 검증하였다.
장대교량은 낮은 고유진동수와 감쇠비를 가지는 초유연구조물로 진동사용성 문제에 취약하다. 하지만 현재 국내 설계지침에서는 풍속이나 진폭에 대한 임계값을 기반으로 유해진동 발생 여부를 평가하고 있다. 본 연구에서는 장대교량에서 발생하는 유해진동을 보다 정교하게 식별하기 위하여 딥러닝 기반 신호분할 모델을 활용한 데이터 포인트 단위의 와류진동 식별 방법론을 제안한다. 특별히 포락선을 가지는 사인파를 활용하여 와류진동에 해당하는 데이터를 합성함으로써 모델 구축에 필수적인 와류진동 데이터 획득 및 라벨링 과정을 대체하였다. 이후 푸리에 싱크로스퀴즈드 변환를 적용하여 시간-주파수 특징을 추출하여 신경망의 인풋 데이터로 사용하였다. 합성데이터만을 이용하여 양방향 장단기 기억신경망(Bidirectional Long-Short-Term-Memory) 모델을 훈련하였고 이를 라벨 정보를 포함한 실제 사장교의 계측데이터를 이용하여 학습한 모델과 비교하여 모델의 실시간 와류진동 식별 성능을 검증하였다.
동물플랑크톤의 종 동종은 해양 생태계의 이해 및 지구온난화를 연구하는데 가장 기본이다. 본 연구에서는 3종의 동물플랑크톤을 종 수준에서 암컷과 수컷을 분류할 수 있는 합성곱 신경망 모델을 제안한다. 첫째 연구자들이 획득하는 현미경 이미지를 기반으로 형태적 특징을 포함하는 학습데이터를 구축한다. 학습데이터의 구축에 있어 대상 종의 형태적 특징 정보를 보존하는 데이터 확대 방법을 적용한다. 둘째 구축된 학습데이터로부터 종 특징들이 학습될 수 있는 합성곱 신경망 모델을 제안한다. 제안한 모델은 높은 해상도를 고려하여 학습 이미지 정보 손실을 최소화하였고 완전 연결 층 대신에 전역 평균 폴링 층을 사용하여 학습 매개 변수 개수를 최소화하였다. 제안한 모델의 일반성을 제시하기 위해 새로이 획득한 데이터를 기반으로 성능을 제시하였다. 마지막으로 개발된 모델에서 추출된 특징들의 시각화를 통해, 분류 모델의 중요 특징을 제시하였다.
본 연구에서는 시뮬레이션 효율을 향상시킨 시뮬레이션 기반의 아날로그 셀 합성기법을 제안한다. 아날로그 셀을 계층적으로 합성하기 위하여 시뮬레이션 기반으로 전류미러, 차동입력단 등 각각의 부회로(sub circuit) 생성기들을 개발하였다. 이 부회로 생성기들을 모듈화 시키고 계층화시킴으로써 OTA(operational transconductance amplifier)나 2단(2-stage) OP-AMP, 비교기(comparator)등 일반적인 아날로그 셀들의 합성을 위하여 사용될 수 있게 하였다. 시뮬레이션 기반의 합성 시간을 줄이기 위하여 2단계 탐색 기법 (2-stage searching scheme)과 시뮬레이션 데이터 재사용기법(simulation data reusing scheme)을 제안하여 적용하였다 아날로그 셀(OTA) 합성 시 301.05sec에서 56.52sec로 최고 81.2%의 합성 시간을 줄이므로 시뮬레이션 기반의 회로 합성시 긴 합성시간의 문제를 해결하였다. 개발한 합성기는 SPICE의 모델 파라미터외에 추가적인 물리적 파라미터들을 필요로 하지 않으며 공정이나 SPICE 모델 레벨(level)에 독립적이기 때문에 새로운 공정에 적용할 때 필요한 준비 시간이 최소화되었다. 본 논문에서는 OTA와 2단 OP-AMP를 각각 합성하여 제안하는 합성기법의 유용성을 입증하였다.
글이나 대화를 일정한 주제의 단위로 나누는 것을 주제 분리라고 한다. 지금까지 주제 분리는 주로 완결된 하나의 문서에서 최적화된 분리를 찾는 방향으로 진행되어 왔다. 하지만 몇몇 응용은 글이나 대화가 진행 중에 주제 분리를 할 필요가 있다. 본 논문에서는 합성곱 신경망을 이용한 교사 학습 모델을 통해 문장의 진행 중에 주제 분리를 수행하는 모델에 대해 제안한다. 그리고 제안한 모델의 성능 검증을 위해 On-line 상황을 가정한 실험과 기존의 C99모델을 결합한 실험을 수행하였다. 실험결과 각각 17.8과 11.95의 Pk 점수를 얻었고, 이를 통해 본 논문의 모델을 통한 On-line 상황에서의 주제 분리 활용의 가능성을 확인하였다.
최근 AI 를 활용한 의료 진단 솔루션 시장이 크게 성장함에 따라 의료 인공지능 기술에 대한 대학 교육에 대한 수요가 증가하고 있지만, 개인정보 유출의 위험성 등으로 인하여 의료 데이터를 대학 교육에 활용하기 어려운 실정이다. 본 논문에서는 실제 의료 데이터 대신 생성적 적대 신경망(GAN)으로 합성된 흉부 X-ray 영상을 활용한 의료 인공지능 교육 모델의 사례를 제시한다. 프로메디우스(주)에 의해 제공받은 흉부 X-ray 합성영상을 사용하여, VGG-16 모델을 훈련하고 성능을 검증 및 평가하며 미세조정을 통해 성능을 개선하는 교육 모델을 구성하였다. 또한 교육모델이 의료 인공지능에 대한 학생들의 이해력 향상에 기여한 효과를 정량적으로 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.