• Title/Summary/Keyword: 모달 시험

Search Result 77, Processing Time 0.031 seconds

Seismic Qualification of Class 1E Battery by Combined Analysis and Testing (수치해석과 실험을 통한 안전등급 축전지의 내진검증)

  • 김영중;박성환;정태영;정정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.87-91
    • /
    • 1992
  • 축전지를 탑재한 프레임형 랙에 대한 공진탐색시험결과를 이용하여 유한요 소에 의한 수치해석모형을 결정하였다. 내진검증시험은 에이징시험을 거친 3 개의 축전지를 포함하여 28개의 축전지를 탑재한 시험랙을 대상으로 수행되 었다. 공진탐색시험으로부터 구한 모달특성치를 이용하여 지진응답을 해석하 였으며 실험치와 부합함을 확인하였다. 시험랙의 지진응답이 실제 설치될 60 개의 축전지를 갖는 전체랙의 응답보다 크므로, 시험랙에 의한 내진검증이 보다 열악한 조건에서 수행되었다고 볼 수 있다. 시험랙에 대한 내진검증시 구조부재의 구조적 안정성과 축전지의 성능유지를 확인한 바 있으므로 전체 랙의 경우에도 내진검증이 이루어졌다고 판단된다.

  • PDF

Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application (바이모달 트램 적용 하니컴 샌드위치 복합재 패널의 저속 충격 해석)

  • Lee, Jae-Youl;Jeong, Jong-Cheol;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.42-50
    • /
    • 2007
  • This paper describes the results of experiments and numerical simulation studies on the low-velocity impact damage of two different sandwich composite panels for application to bodyshell and floor structure of the BIMODAL tram vehicle. Square test samples of 100mm sides were subjected to low-velocity impact loading using an instrumented testing machine at four impact energy levels. Part of this work presented is focused on the finite element analysis of low-velocity impact response onto a sandwich composite panels. It is based on the application of explicit finite element (FE) analysis codes LS-DYNA 3D to study the impact response of sandwich structures under low-velocity impact conditions. Material testing was conducted to determine the input parameters for the metallic and composite material model, and the effective equivalent damage model for the orthotropic honeycomb materials. Numerical and experimental results showed a good agreement for damage area and the depth of indentation of sandwich composite panels created by the impact loading.

A Modal Testing of Large Naval Vessel Using Main Gun Firing Test (주포 사격시험을 이용한 대형 함정의 모달테스트)

  • Park, Mi-You;Han, Hyung-Suk;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The accurate results of finite element analysis are directly related to reliability FE model which is exactly describing dynamic characteristics of target structure. So, a model updating is necessary to establish reliable FE(Finite Element) model with a lot of experience and effort using modal testing. A large structure is too difficult to obtain the dynamic characteristics owing to its weight and size. In this work, using main gun firing test, modal testing was performed to obtain dynamic characteristics of large naval vessel, which is difficult to tap the general modal testing method. The result of experiment was considered its possibility and future plans.

Vibration measures for local structures through modal tests (모달시험을 통한 국부 구조물 방진대책 수립)

  • Kwon, Jong Hyun;Kim, Mun Su;Yang, Sung Boong;Lee, Won Seok;Lee, Bong Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.14-18
    • /
    • 2017
  • The Lashing bridge and radar mast of ship are upright structures so they are generally exposed to excessive vibration. Recently, the use of low speed main engines for improving fuel efficiency has been increasing, and the excitation frequencies of the main engine are moving to the low frequency band. If the excitation frequencies are coincident with the natural frequencies of the local structure, excessive vibration occurs during main engine operating condition. The modal test is to experimentally determine resonance frequency, mode shape, and damping, which are vibration characteristics of a mechanical structure under dynamic external force. Through this study, the vibration characteristics of the structure are obtained by modal tests and the low vibration measure is applied to the local structures.

  • PDF

A Double Cantilever Sandwich Beam Method far Evaluating Frequency Dependence of Dynamic Modulus and Damping Factor of Rubber Materials (고무의 동탄성계수와 손실계수의 주파수 의존성을 평가하기 위한 양팔 샌드위치보 시험법의 연구)

  • 김광우;박진택;이덕보;최낙삼
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.69-76
    • /
    • 2001
  • This paper proposes a double cantilever sandwich-beam method fur evaluating the frequency dependence of dynamic characteristics of rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Quadratic relationships of dynamic elastic modulus and material loss factor of rubbers with frequency were suggested employing the least square error method.

  • PDF

Full Vehicle Modal Testing using Single-Run FRF Measurement and Mode Map Validation (Single-Run FRF 측정을 통한 실차 모달 시험 및 모드맵 검증)

  • Lee, Keun-Soo;Jung, Seung-Kyun;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • Finding reasonable flexural modes from the full vehicle modal testing has always been a difficult job to N&V engineers due to FRF inconsistency, nonlinearity, heavy damping and, in many cases, interactions between global body structural modes and massive isolate/non-isolated subsystem modes. This paper provides a brier overview of the mode map validation using single-run FRF measurement with highly sensitive accelerometers fur the full vehicle modal analysis and then it can be used to characterize the vehicle's global/local vibration performances, especially customer perceived "structural feel" typically below 40Hz.

  • PDF

Evaluation of Blade Resonance of 5MW Power Generation Gas Turbine (발전용 소형가스터빈 블레이드 공진 안정성 평가)

  • Ahn, Sung-Jong;Park, Lu-Ke;Yun, Tae-Jun;Suk, Jin-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.433-438
    • /
    • 2011
  • Doosan has been developing a 5MW class gas turbine engine, DGT-5. Campbell diagram has been used for prediction of possible occurrence of resonances of rotating machinery. The Campbell diagram consists of blade natural frequency and excitation frequency. In this paper, modal characteristics of compressor and turbine blades are investigated and Campbell diagram is obtained. We calculated compressor and turbine blade's natural frequency using ANSYS tool. The result has been verified through test.

  • PDF