• Title/Summary/Keyword: 모달분석

Search Result 201, Processing Time 0.03 seconds

Applicaion of Sensitivity Formulation to Analyze the Dynamic Response due to the Excitation Force for the Undamped Vibration of Cantilever Beam (외팔보의 비감쇠 진동시 가진력에 의한 동적 반응의 민감도 정식화 및 해석)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.29-34
    • /
    • 2020
  • In this study, a sensitivity formulation was applied to analyze the dynamic response due to the effect of the excitation force for the undamped vibration of the cantilever beam. The theoretically fundamental formulations were derived considering an eigenvalue problem and its modal analysis to govern the second order algebraic differential equation in terms of the change in the modal coordinate with respect to the design parameters. A representative physical quantity pertaining to the dynamic response, that is, the rate of change in the dynamic displacement, was observed by changing the design variables, such as the cross-sectional area of the beam. The numerical results were obtained at various locations, considering the application of the external forces and observation of the dynamic displacement. When the detection position was closer to the free end of the cantilever beam, the sensitivity of the dynamic displacement was higher, as predicted through the oscillating motion of the beam. The presented findings can provide guidance to compute the dynamic sensitivity for a flexibly connected structure under dynamic excitations.

Development of a Multi-Modal Physiological Signals Measurement-based Wearable Device for Heart Sounds Analysis (멀티 모달 생체 신호 측정이 가능한 심음 분석 웨어러블 장치 개발에 관한 연구)

  • Lee, Soo Min;Lee, Mi Ran;Wei, Qun;Park, Hee Joon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1251-1256
    • /
    • 2022
  • Auscultation of heart sounds using a stethoscope is the basic method to diagnose the cardiovascular disease and observation of abnormalities. However, the heart sound transmitted to the ear through the stethoscope is greatly affected by internal sounds such as organ movement or breathing. In addition, the user's experience significantly influences the accuracy of the auscultation result. Therefore, in this paper, we developed a wearable device that simultaneously measures heart sound and PPG signals for cardiac condition monitoring. The structure of the proposed device is designed to simultaneously measure heart sound and PPG signals when worn on a finger and placed on the chest. A prototype was implemented according to the design structure, and it was confirmed that the performance of measurements and collection for physiological signals was excellent through experiments.

Vibration Analysis of the Sensor Control Box Applied to a Commercial Brake Chamber Real-time Monitoring System (브레이크 챔버의 실시간 모니터링 시스템에 적용되는 센서 컨트롤 박스의 진동 해석에 관한 연구)

  • Taekju Hwang;Kyungmin Jum;Soonsik Myung;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.65-69
    • /
    • 2024
  • This study aimed to analyze the structural integrity of a sensor control box, a critical component for real-time monitoring of brake chamber pressure in large commercial vehicles and trailers. We utilized the computational analysis program ANSYS Workbench R2021 based on our testing conditions and vibration test specification KS R1034. Through modal analysis, we identified resonance frequencies within the frequency range of 5 Hz to 100 Hz and compared results in the frequency range of 33 Hz to 67 Hz using harmonic analysis.

A research on feedback effect according to different sensory modality for attention recovery (집중력 회복을 위한 감각 모달리티 별 피드백에 대한 연구)

  • Hyun, Hye-Jung;Whang, Min-Cheol
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • This study aims to empirically examine the effect of feedback on attention recovery. The role of feedback has been proven to be positive in particular to extend the limitation of attention resource. We studied the impact of feedback on attention by varying its type and modality. An experimental system was developed to observe how accurately the participants performed the pattern-matching task with differential feedback provided on a real-time basis based on the ADHD diagnostic model. Six university students participated in this study with 6 different feedback conditions and controlled conditions. The participants experienced the feedbacks before experiment. They was asked two hundred tasks in four feedback conditions. The difference of feedback effect according to different modality is to find within a subject. The results indicated that the combined feedback of cognitive with perceptual stimulus led better performance than the combined of perceptual feedbacks.

  • PDF

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

A Study on Shaft Dynamic Characteristic for G/T 250TON Double-Ended Car-Ferry (G/T 250톤 양방향 차도선 축계의 동특성에 관한 고찰)

  • Kang, Byoung-Mo;Oh, Young-Cheol;Bae, Dong-Gyun;Seo, Kwang-Cheol;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • The car ferry operating between the mainland and the island plays an important role on transportation of goods and passengers. Therefore, the improvement of efficiency and safety as well as economic factor are importantly considered in the development process of car ferry. Double-ended car ferry is already popularized because of its economic feasibility and convenience for passenger in Europe and developed countries, and the demand is booming in domestic. In this paper, dynamic characteristics of propeller shaft and strength in double-ended car ferry are analyzed using campbell diagram and modal analysis. Based on the analysis of dynamic characteristics, resonant phenomenon and critical speed are stable when occurring the propeller shaft vibration due to forward and reverse propeller shaft working.

Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working (컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석)

  • Kim, Jungyun;Kim, Jingon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.379-384
    • /
    • 2014
  • This article describes the dynamic behaviors of a rubber tired gantry crane(RTGC) under typical load conditions which are used in the design of gantry cranes. In order to investigate the dynamic characteristics of an RTGC, we developed a finite element crane model for its huge structure. The finite element model was validated with the modal test results, e.g., natural frequencies and normal modes. And other components of RTGC were converted into detailed 3D CAD models and finally transformed to rigid body models in a dynamic simulation program ADAMS. The load conditions considered in this paper were a normal operating condition(OP1) and container hanging condition with no external loads. As a result, we could find there was large influence of crane's vibration owing to its structural stiffness and deformation. And the vibration of crane could made the movements of RTGC, which occurs crash or malfunction of crane works.

Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway (자기부상열차/가이드웨이 동적상호작용 해석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1559-1565
    • /
    • 2013
  • This study aims to investigate the dynamic interaction characteristics between Maglev vehicles and an elevated guideway. A more detailed model for the dynamic interaction of the vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on prototyping, flexible guideway by a modal superposition method, and levitation electromagnets including the feedback controller into an integrated model. The proposed model was applied to an urban transit Maglev developed for a commercial application to analyze the dynamic response of the vehicle and guideway, and the effect of the surface roughness of the rail, mid-span guideway deflections, and air gap variations are then investigated from the numerical simulation.

Rail Corrugation Effects on the Dynamic Behavior of Clips of Rail Fastening System in Operation Environment of Urban Railway (도시철도 운영환경에서 파상마모에 의한 레일체결장치 클립의 진동 특성)

  • Kim, Man-Cheol;You, Won-Hee;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.489-497
    • /
    • 2016
  • The rail fastening system, which provides a structural connection between the rail and the sleepers, is a main track component that plays an important role in retaining the rail gauge within acceptable tolerances, as well as in passing the train load to the roadbed through the sleepers. In this paper, a modal test was first performed to evaluate the dynamic characteristics (e.g., natural frequency) of the clips of the railway fastening system under the condition of rail corrugation in urban railway operation. The corrugation-induced passing frequency was then compared with the natural frequency of the clips to investigate any resonance effect during train passage. Furthermore, a field test under train passage was conducted to measure the accelerations on the rail and the rail fastening clips as well as the strains on the rail fastening clips in the rail corrugation condition. The field measurements indicated that the accelerations on the rail and the rail fastening clips have a close relationship with the rail corrugation, but they had a minimal effect on the strains of the rail fastening clips.

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose the Deep Learning-Based Companion Animal Abnormal Behavior Detection Service, which using video and sensor data. Due to the recent increase in households with companion animals, the pet tech industry with artificial intelligence is growing in the existing food and medical-oriented companion animal market. In this study, companion animal behavior was classified and abnormal behavior was detected based on a deep learning model using various data for health management of companion animals through artificial intelligence. Video data and sensor data of companion animals are collected using CCTV and the manufactured pet wearable device, and used as input data for the model. Image data was processed by combining the YOLO(You Only Look Once) model and DeepLabCut for extracting joint coordinates to detect companion animal objects for behavior classification. Also, in order to process sensor data, GAT(Graph Attention Network), which can identify the correlation and characteristics of each sensor, was used.