• Title/Summary/Keyword: 명암도 영상

Search Result 519, Processing Time 0.027 seconds

Human Friendly Recognition and Editing Support System of Korean Language (인간에게 친밀한 한글 인식 및 편집 지원시스템)

  • Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.494-499
    • /
    • 2007
  • In this paper we realized a system, if a user selects the area of the important parts or the arrangement parts when he reads the books or the papers, which amends, stores and readjusts the characters that are included in the selected area by outputting the characters to the word processor in sequence. If a user selects what he wishes lot with his finger, the system detects the movement of the finger by applying the hand recognition algorithm and recognizes the selected area. The system converts the distance of the width and the length of the selected area to the number of the pulse, and controls the motor to move the camera at the position. After the system scales up/down the zoom to be able to recognize the character and controls the focus to the regulated zoom closely, it controls the focus in detail to get more distinct image by using the difference of the light and darkness. We realize the recognition and editing support system of korean language that converts the obtained images to the document by applying the character recognition algorithm and arrange the important parts.

Statistical Analysis for Assessment of Fingerprint Sensors (지문 인식 센서 평가를 위한 통계학적 분석)

  • Nam Jung-Woo;Kim Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.105-118
    • /
    • 2006
  • The purpose of this research is twofold. The first is to develop the measures for evaluating performance of fingerprint sensor modules quantitatively and objectively. The second is to present the methodology for evaluating compatibilities among disparate fingerprint sensors. This paper focuses on the performance evaluation not of fingerprint authentication algorithm but of fingerprint sensors. Presented in this paper are several indicators and their measuring schemes such as the actual resolution of fingerprint images, the level of distortion by horizontal and vertical resolutions of fingerprint image, the intensity distribution for various illuminating conditions. Nine commercial sensor modules have been tested and the test results are expressed by using 95% confidence interval based on 50 acquired fingerprint images. The experimental results are compared with the manufacturer's sensor specification.

Discrimination Energy Range Analysis of Contrast Agents and Calcification using by VNC Application of DECT (DECT의 VNC 적용으로 조영제와 석회화의 식별 에너지 영역 분석)

  • Hyeon-Ju Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.179-185
    • /
    • 2024
  • By applying the various energy spectrum imaging functions of DECT, To quantitatively distinguish between contrast agent and calcification, changes in image quality are analyzed by comparing CNR and SNR. We investigated the level of dose reduction during two scans and one VNC scan. As a result, contrast agent and calcification were best distinguished in the 70 keV area, CNR and SNR were excellent, and scan dose was reduced by about 26.5%. Therefore, by applying DECT, meaningful results were obtained that could visually and quantitatively distinguish between the intravascular contrast agent and the shade of calcification. If clinical research is conducted in the future considering the patient's age, gender, and body type, quantitative analysis of calcification will be possible even with intravascular contrast agent flowing in, which will have a significant effect in reducing the patient's scan dose and the burden of multiple scans.

The Relationship of European Landscape Painting and the Scientific (Visual) Instruments in the Pre-modern Period: On the Using of Camera obscura and Camera lucida in the Artistic Works by Canaletto·Sandby·Talbot (근대 유럽 풍경화와 과학(영상)기구의 연관성 - 카날레토·샌드비·탈보트의 미술작업에서 카메라 옵스쿠라와 카메라 루시다의 사용에 대해)

  • LEE, Sangmyon
    • Korean Association for Visual Culture
    • /
    • v.23
    • /
    • pp.329-368
    • /
    • 2013
  • This thesis investigates the relationship of the 18th century European landscape painting and the scientific (optical) instruments like Camera obscura and Camera lucida. Based on the fact that some landscape painters, 'veduta painters', at that times might have used or surely used these optical instruments in their sketches/drawings, it explores the reasons for using them and their working process with them, and analyses the advantages/disadvantages here as well as the aesthetic problems in the cases of the Italian painter Antonio Canaletto (or Canal, 1697-1768), the British topographic artist Thomas Sandby (1721-98) and the British chemist/optician Willian Henry Fox Talbot (1800-77). Advantages of using Camera obscura/lucida are rapidity in drawing, truthful representation of nature/reality and 'accurate' fulfilling of perspectival structures. But partly 'inaccurate' or simplified depictions as disadvantages can be traced in drawings/sketches made by using these instruments. Another problem lie in the subordination of the artistic work to the technical devices, but for artists still remain the creative working process in painting like coloring, tone and chiaroscuro etc. Therefore, it can be maintained that the optical instruments have played a role of the subsidiary tool as an aid to painting.

Edge Response Analysis of UAV-Images Using a Slanted Target (경사 타겟을 이용한 무인항공영상의 경계반응 분석)

  • Lee, Jae One;Sung, Sang Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) photogrammetry has recently emerged as a means of obtaining highly precise and rapid spatial information due to its cost-effectiveness and high efficiency. However, current procedures or regulations for quantitative quality verification methods and certification processes for UAV-images are insufficient. In addition, the current verification method for image quality is not evaluated by an MTF (Modulation Transfer Function) analysis or edge response analysis, which can analyze the degree of contrast including image resolution, and only relies on the GSD (Ground Sample Distance) analysis. Therefore, in this study, the edge response analysis using a Slanted edge target was performed along with GSD analysis to confirm the necessity of analyzing edge response analysis in UAV-images quality analysis. Furthermore, a Matlab GUI-based software tool was developed to help streamline the edge response analysis. As a result, we confirmed the need for edge response analysis since the outputs of the edge response analysis from the same GSD had significantly different outcomes. Additionally, we found that the quality of the edge response analysis of UAV-images is proportional to the performance of the camera mounted on the UAV.

Auto-Positioning of Patient in X-ray Diagnostic Imaging (진단 엑스선 영상에서 환자 위치잡이의 자동화)

  • Yang, Won Seok;Son, Jung Min;Kwon, Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • As interest in artificial intelligence has increased, artificial intelligence has been actively studied in the medical field. In Korea, artificial intelligence has been applied to medical imaging devices such as X-ray imaging, Computer Tomography and Magnetic Resonance Imaging and artificial intelligence capable of acquiring radiation images of patients without radiologists in the future Medical devices are expected to be invented. This study was an initial study on the automation of patient positioning in X - ray imaging. We used x-ray equipment and human phantoms to evaluate the positioning. The program used Visual Studio 2010 MFC and the image was in the size $1450{\times}1814$. The pixel values were converted to contrasts with values of 0 to 255 that can be visually recognized and output to the monitor. We developed a procedure algorithm program that predicts the angle of the output image through three pixel coordinate values and induces the patient to perform correct positioning according to the voice guidance according to the angle. In the next study, we will study the artificial intelligence to grasp the structure itself and calculate the angle, rather than conveying the reference of coordinates to artificial intelligence. In the future, it is expected that it will be helpful in the study of artificial intelligence from shooting to positioning through the automation of positioning.

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

Image Contrast Enhancement Technique for Local Dimming Backlight of Small-sized Mobile Display (소형 모바일 디스플레이의 Local Dimming 백라이트를 위한 영상 컨트라스트 향상 기법)

  • Chung, Jin-Young;Yun, Ki-Bang;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This paper presents the image contrast enhancement technique suitable for local dimming backlight of small-sized mobile display while achieving the reduction of the power consumption. In addition to the large-sized TFT-LCD, small-sized one has adopted LED for backlight. Since, conventionally, LED was mounted on the side edge of a display panel, global dimming method has been widely used. However, recently, new advanced method of local dimming by placing the LED to the backside of the display panel and it raised the necessity of sub-blocked processing after partitioning the target image. When the sub-blocked image has low brightness, the supply current of a backlight LED is reduced, which gives both enhancement of contrast ratio and power consumption reduction. In this paper, we propose simple and improved image enhancement algorithm suitable for the small-sized mobile display. After partitioning the input image by equal sized blocks and analyzing the pixel information in each block, we realize the primary contrast enhancement by independently processing the sub-blocks using the information such as histogram, mean, and standard deviation values of luminance(Y) component. And then resulting information is transferred to each backlight control unit for local dimming to realize the secondary contrast enhancement as well as reduction of power consumption.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.