• Title/Summary/Keyword: 면내 진동

Search Result 93, Processing Time 0.024 seconds

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

In-plane Free Vibration Analysis of Parabolic Arches with Hollow Section (중공단면을 갖는 포물선형 아치의 면내 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo;Lee, Jae-Young;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-223
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and reference are made to validate theories and numerical methods developed herein. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the rise to span length ratio.

Flapwise bending vibration analysis of rotating cantilever beams considering shear and rotary inertial effects (전단 및 단면 회전관성효과를 고려한 회전 외팔보의 면외 굽힘진동해석)

  • Shin, Sang-Ha;Yoo, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1580-1588
    • /
    • 1997
  • A modeling method for the flapwise bending vibration of a rotating cantilever beam which has small slenderness ratio is presented in this paper. It is shown that as the slenderness ratio decreases the shear and rotary inertia effects increase. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the flapwise bending natural frequencies are higher than the chordwise bending natural frequencies. The discrepancy between first natural frequencies are especially significant when the hub radius ratio is small.

Free Vibration Analysis of Curved Beams with Varying Cross-Section (단면적이 변하는 곡선보의 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.453-462
    • /
    • 2009
  • The differential quadrature method(DQM) is applied to the free in-plane vibration analysis of circular curved beams with varying cross-section neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and end conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives good accuracy even with a small number of grid points. In addition, the corrected results are given for the beams not previously presented for this problem.

Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • 신창호;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

Analysis of the Crankshaft Behavior on In-plane and Out-plane Mode at the Firing Stage (엔진 운전시 크랭크샤프트의 면내.외 모드의 거동 해석)

  • Abu Aminudin;Lee, Hae-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.319-328
    • /
    • 2006
  • This paper presents a method for analysis of the mechanical behavior of a crankshaft in a four-cylinder internal combustion engine. The purpose of the analysis was to study the characteristics of the shaft in which the pin and arm parts were assumed to have a uniform section in order to simplify the modal analysis. The results of natural frequency transfer function and mode shape were compared with those obtained by experimental work. The results obtained from the comparison showed a good agreement with each other and consequently verified the analysis model. Furthermore, a prediction of crankshaft characteristics under the firing condition, by using the model, was performed. This study describes a new method for analyzing the dynamic behavior of crankshaft vibrations in the frequency domain based on the initial firing stages. The new method used RMS values to calculate the energy at each bearing journal and counter weight shape modification under the operating conditions.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model (연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석)

  • 홍남식;허택녕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-115
    • /
    • 2000
  • Numerical model is proposed to estimate dynamic responses of riser with vortex excitation by inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are inspected through the physical interpretation to give the verification and usefulness of the suggested numerical model.

  • PDF

In-Plane Vibration Analysis of Asymmetric Curved Beams Using DQM (DQM을 이용한 비대칭 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2734-2740
    • /
    • 2010
  • The free in-plane vibration of asymmetric circular curved beams with varying cross-section is analyzed by the differential quadrature method (DQM) neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and boundary conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives the good accuracy even with a small number of grid points.