• Title/Summary/Keyword: 면내좌굴

Search Result 69, Processing Time 0.024 seconds

In-Plane Buckling Behavior of Fixed Shallow Parabolic Arches (고정지점을 갖는 낮은 포물선 아치의 면내 좌굴거동)

  • Moon, Jiho;Yoon, Ki-Yong;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.79-87
    • /
    • 2008
  • This paper investigates the in-plane stability of fixed shallow arches. The shape of the arches is parabolic and the uniformly distributed load is used in the study. The nonlinear governing equilibrium equation of the general arch is adopted to derive the incremental form of the load-displacement relationship and the buckling load of the fixed shallow arches. From the results, it is found that buckling modes (symmetric or asymmetric) of the arches are closely related to the dimensionless rise H, which is the function of slenderness ratio and the rise to span ratio of such arches. Moreover, the threshold of different buckling modes and buckling load for fixed shallow arches are proposed. A series of finite element analysis are conducted and then compared with proposed ones. From the comparative study, the proposed formula provides the good prediction of the buckling load of fixed shallow arches.

Elastic Buckling of Transversely Isotropic Plate with Variable Width (폭이 변하는 Transversely Isotropic 판의 탄성좌굴)

  • Yoon, S.J.;Jung, J.H.
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.35-43
    • /
    • 2002
  • Presented in this paper are the results of an analytical investigation pertaining to the elastic buckling behavior of transversely isotropic plate with variable width subjected to unequal uniaxial compression forces at the ends and in-plane shear forces at the sides. The existing analytical solution developed for the isotropic plates is extended so that the transversely isotropic material properties can be taken into account in the plate buckling analyses. For the derivation of buckling equation the power series solution is employed. Graphical forms of results for finding the buckling strength of tapered plates are presented. In addition, the finite element analysis is also conducted. The results are compared and discussed.

The Development on the Buckling Strength Estimation Formula of Plate Members in Consideration of Inplane Tension(I) (면내인장력을 고려한 판부재의 좌굴강도 평가식 개발 (I))

  • Ham, Juh H.;Kim, Ul N.;Chung, Yun S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 1996
  • Ship structure basically consists of plate members and it's overall strength depends an the stiffness and strength of each plate member. The buckling strength of plate is one of the most important design criteria when we investigate the structural intergraty. Therefore, it is necessary to surly reasonable buckling formula in order to carry out a more efficient and reliable design. In the present study, the buckling design formula of plate panels under combined loads(inplane compression, tension and shear) is obtained on the theoretical solution or reference paper. This formula is compared with the existing theoretical solution, other author's formula[1], design codes of LR and results which are obtained by numerical analysis. It has a good correlation with numerical analysis results or theoretical ones. When we evaluate buckling strength of plate panels, this formula can be presented with reasonable accuracy.

  • PDF

Buckling Characteristics of Ship Bottom Plate - On the Stiffener Restraint Effects - (선박 선저외판의 좌굴특성에 관한 연구 - 보강재의 구속영향 검토 -)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.130-138
    • /
    • 1994
  • Bottom plates of empty hold are subjected to not only water pressure but also bi-axial inplane loads, specially in the alternate full loading full loading condition of bulk carrier. This kind of plate behaviours is very difficult to be explained and to be estimated using common buckling design guide in the initial design stage of hull structure, therefore, some more concrete studies for this plate structure was performed based on the currently developed buckling estimation formula. In this buckling formula, torsional stiffness effects of edge stiffener are included additionally and effects of elastic buckling strength of plate panel are treated as characteristic value problem. Also considering boundary stiffener effects and inplane and lateral loading, evaluation of bottom plate scantling using this formula, calculated results using various classification regulation of buckling strength and results of first report approach are compared each other and useful guides using developed formula for bottom plate scantling design are discussed.

  • PDF

A Study on the Geometric Nonlinear Behaviour of Ship Plate by Energy Method (에너지법에 의한 선체판의 기하학적 비선형거동에 관한 연구)

  • Jae-Yong Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.94-104
    • /
    • 1999
  • Plate buckling is very important design criteria when the ship is composed of high tensile steel plates. In general, the plate element contributes to inplane stiffness against the action of inplane load. If the inplane stiffness of the plating decreases due to buckling including the secondary buckling, the flexural rigidity of the cross section of a ship's hull also decreases. In these cases, the precise estimation of plate's behaviour after buckling is necessary, and geometric nonlinear behaviour of isolated plates is required for structural system analysis. In this connection, the author investigated the geometric nonlinear behaviour of simply supported rectangular plates under uniaxial compression in the longitudinal direction in which the principle of minimum potential energy method is employed. Based on the energy method, elastic large deflection analysis of isolated palate is performed and simple expression are derived to discuss the bifurcation paint type buckling and limit point type buckling.

  • PDF

Buckling Analysis of Laminated Composite Plates under the In-plane Compression and Shear Loadings (면내 압축 및 전단하중을 받는 적층복합판의 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5199-5206
    • /
    • 2010
  • In this paper, we investigate the buckling analysis of laminated composite plates, using a improved assumed natural strain shell element. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. The eigenvalues of the laminated composite plates are calculated by varying the width-thickness ratio and angle of fiber. To improve an shell element for buckling analysis, the new combination of sampling points for assumed natural strain method was applied and the refined first-order shear deformation theory which allows the shear deformation without shear correction factor. In order to validate the present solutions, the reference solutions are used and discussed. The results of laminated composite plates under the in-plane shear loading may be the benchmark test for the buckling analysis.

The Korea Academia-Industrial cooperation Society (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 전체좌굴강도 근사해 유도 및 해석적 검증 방안)

  • Choi, Byung-Ho;Park, Sang-Kyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.600-602
    • /
    • 2012
  • 폐단면리브 적용 판의 면내 압축좌굴 거동 특성 중에서 보강재 강성이 작고 비교적 낮은 임계하중을 받는 경우 전체기둥좌굴 거동이 예상된다. 본 논문은 폐단면리브 단면 강성의 고려 방안에 따라 단순 보 유사모형을 정립하고 전체좌굴에 대해 에너지 근사해법을 적용하여 전체좌굴강도 근사해를 유도하기 위한 기초적인 연구방안으로써 검토한 내용을 소개하고자 한다. 유사모형의 폐단면리브 중심에서 휨강성이 발휘되는 것으로 가정하여 모형화 하였다. 폐단면리브 보강판의 프로토타입 모델에 대해 직교이방성 $[(0^{\circ})_4]_s$와 Cross-ply $[(0^{\circ}/90^{\circ})_2]_s$ 적층단면을 각각 고려한 유한요소 해석을 실시하였다. U리브 단면강성에 따른 복합적층 보강판의 탄성좌굴강도 해석결과를 근사해 공식과 비교하고 U리브로 보강된 복합적층판의 좌굴모드 변화양상을 수치해석적으로 검토하였다.

  • PDF

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Elastic Shear Buckling of Transversely Stiffened Orthotropic Web Plates (수직보강된 직교이방성 복부판의 전단탄성좌굴)

  • S.J. Yoon;J.H. Jung
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.37-43
    • /
    • 2000
  • In this paper an analytical investigation pertaining to the elastic shear buckling behavior of transversely stiffened orthotropic plate under in-plane shear forces is presented. All edges of plate are assumed to be simply supported and the evenly placed stiffener is considered as a beam element neglecting its torsional rigidity. For the solution of the problem Rayleigh-Ritz method is employed. Using the derived equation, the limit of buckling stress of transversely stiffened plate is suggested as a graphical form. Based on the limit of buckling stress of stiffened plate, graphical form of results for finding the required stiffener rigidity is presented when one and two stiffeners are located, respectively.

  • PDF