• Title/Summary/Keyword: 멤브레인 제거 시스템

Search Result 32, Processing Time 0.027 seconds

Development of Deburring System for Aircraft Components (Membrane 제거를 위한 전용 시스템 개발)

  • 최운집;정원재;성승학;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1070-1073
    • /
    • 2004
  • This paper is on the development of a system for removing membranes which is designed exclusively for aircraft components. Membrane removal solution is a most critical issue in aerospace industries since a method of manufacturing the components tends to be changed from fabrication of many parts to cutting into one body. The cutting method inevitably produces a huge amount of chips and then membranes remain in the body. The membrane removal process, as a result, becomes an important issue since it is directly related to productivity. We tried to develop a new machine which will replace the conventional method that uses a handy tool. The machine has been designed for a cutting tool set to follow the unique shape of the slot in the body by a cam follower and cut the membrane automatically. The design has been checked by structural analysis: stress and vibration analysis. A prototype test has been finished. This paper summarizes a series of development process of the deburring machine and some design issues are discussed.

  • PDF

A study on removal of 1,4-dioxane in drinking water by multi filtration system (다단계 필터시스템에서의 음용수 중 1,4-Dioxane 제거)

  • Lee, Kang Jin;Pyo, Heesoo;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.154-162
    • /
    • 2005
  • Recently, 1,4-Dioxane is known as the contaminant in water plants in Korea. Owing to its toxicity and potential health effect, 1,4-Dioxane must be determined at very low levels in drinking water. Studies on the removal of 1,4-Dioxane in drinking water were performed by using multi filtration system with activated carbons and membrane filter. For extraction of 1,4-Dioxane, methyl-t-butyl ether (MTBE) was used and then analyzed using gas chromatography-mass selective detection (GC/MSD). Removal experiment was proceeded for 300 L with a sample volume of 30 L. At first. The removal was 70%, 95% and 100% after using activated carbon, membrane and second activated carbon respectively. At larger accumulated water fluxes, the removal rate decreased at each filter. After the flow volume was 300 L, the removal rate was 30%, 88% and 99% through the first activated carbon, membrane and second activated carbon respectively.

Appropriate Technology and Field Application of Non-powered Water Purification System Using Nanofiber Membrane (나노섬유 멤브레인 기반 무동력 정수 시스템의 적정기술 및 현장 적용)

  • Lee, Jin;Yun, Byeong Gweon;Han, Kyoung Gu;Lee, Seung Hoon;Kim, Cheol Hyeon;Kim, Chan;Lee, Yunho;Lee, Dongwhi;Lee, Seunghyeok;Kim, Kyoung-Woong
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2021
  • Gravity-driven membrane (GDM) filtration system based on the nanofiber membrane was investigated. This system can be operated with little energy demand due to a gravitational pressure-driven filtration and biological fouling control strategy. Moreover, the optimal module configuration based on the high permeance of nanofiber membrane can provide a significantly high water productivity. In order to evaluate its applicability potential, the pilot-scale (3000-5000 L/day) systems with nanofiber membranes were operated in developing countries (Kiribati and Tuvalu). Our results showed that the 14-92 L/(m2×h) of the permeate flux was determined indicating a stabilized water productivity. In addition, the permeate water indicated a high removal rate (more than 99.99%) of turbidity and bacteria. Consequently, the system can provide a stabilized water production with safe permeate water quality during long-term operation. These findings exemplify an effective approach to decentralized drinking water treatment for developing countries.

Application of Microfiltration and Reverse Osmosis System to Sewage Reuse for Industrial Water (하수를 공업용수로 재이용하기 위한 정밀여과 및 역삼투 시스템 적용에 관한 연구)

  • 강신경;이해군;김지원
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • This research was to demonstrate the Possibility of sewage reuse for industrial purpose with use of membrane system. A bench scale test with microfiltration and reverse osmosis showed that microfiltration in the sewage treatment was not able to remove the soluble salts but 70% suspended solids (SS), suggesting that the treated water could be used as direct cooling water. In addition, the reverse osmosis removed not only soluble salts but also 95% SS, proposing that reverse osmosis-treated water could be used as both indirect cooling water and rinsing water. For a 100 ton/day pilot plant, 20 and 12 elements of microfiltration and reverse osmosis were required, respectively.

Principles and Current Technologies of Continuous Electrodeionization (연속식 전기탈이온 장치의 원리와 기술 동향)

  • Moon Seung-Hyeon;Song Jung-Hoon
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.167-181
    • /
    • 2006
  • Continuous Electrodeionization (CEDI) is a hybrid separation process of electrodialysis and ion exchange to produce high purity water under electric field. CEDI system is generally explained with two regimes, ionic removal and electroregeneration. The performance optimization and modification of stack configuration is required for the effective utilization and various applications of a CEDI system. Understanding on various system characterization method and ion transport equation is thus necessary to utilize the CEDI system more effectively. This article provides a general review of continuous electrodeionization, including the basic principles and current stage of technologies of a CEDI system.

A Review on Lithium Recovery by Membrane Process (멤브레인 공정에 의한 리튬 회수에 대한 총설)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.315-326
    • /
    • 2021
  • Lithium ion battery (LIB) demands increase every year globally to reduce the burden on fossil fuels. LIBs are used in electric vehicles, stationary storage systems and various other applications. Lithium is available in seawater, salt lakes, and brines and its extraction using environmentally friendly and inexpensive methods will greatly relieve the pressure in lithium mining. Membrane separation processes, mainly nanofiltration (NF), is an effective way for the separation of lithium metal from solutions. Electrodialysis and electrolysis are other separation processes used for lithium separation. The process of reverse osmosis (RO) is already a well-established method for the desalination of seawater; therefore, modifying RO membranes to target lithium metals is an excellent alternative method in which the only bottleneck is the interfering presence of other metal elements in the solution. Selectively removing lithium by finding or developing suitable NF membranes can be challenging, but it is nonetheless an exciting area of research. This review discusses in detail about lithium recovery via nanofiltration, electrodialysis, electrolysis and other processes.

Study on the Carbon Membrane System for the Wastewater Treatment Via the Electric Adsorption and Desorption Process (전기적 흡.탈착법을 이용한 폐수처리용 탄소막 시스템 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • To remove total dissolved solid (TDS) from wastewater, a carbon membrane system was prepared, using carbon membranes made from conductive activated carbon and poly(vinylidene fluoride) (PVDF). Using 100 ppm aqueous solutions of NaCl, $Na_2SO_4,\;MgCl_2,\;MgSO_4$, the basic properties of the carbon membranes used were studied. For the treatment of the real dye wastewater supplied from Kyungin Corp., a pilot scale carbon membrane system was also prepared, which was consisted of 240 plies of carbon membranes of $20cm{\times}20cm$ (length${\times}$width). Using the real wastewater with different TDS such as 941, 2050, 2810, 3830, 4960, 6030 ppm, prepared by the dilution of the original wastewater with pure water, the performance of the pilot scale carbon membrane system was studied. The effect of the operational conditions was studied.

Simulation of Membrane-absorption Hybrid Process for LNG-FPSO (LNG-FPSO용 막-흡수 하이브리드 공정 전산모사)

  • Min, Kwang-Joon;Cho, Habin;Kim, Jin-Kuk;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • A process design was performed for a removal of acid gases using membrane-absorption hybrid system in LNG-FPSO. Commercial process simulator Promax version 4.0 was utilized for comparing acid gases removal capabilities of amine absorption process and hybrid process. Simulation results show hybrid process could be small amine solvent circulate rate, energy consumption, equipment sizing compared to typical amine absorption process. As a result, hybrid process which is small footprint and energy saving process may be a good solution for the pre-treatment of natural gas in LNG-FPSO.

CO2/CH4 Separation in Metal-organic Frameworks: Flexibility or Open Metal Sites? (금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구)

  • Jung, Minji;Oh, Hyunchul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.136-141
    • /
    • 2018
  • Carbon dioxide ($CO_2$) exists not only as a component of natural gas, biogas, and landfill gas, but also as a major combustion product of fossil fuels which leads to a major contributor to greenhouse gases. Hence it is essential to reduce or eliminate carbon dioxide ($CO_2$) in order to obtain high fuel efficiency of internal combustion engine, to prevent corrosion of gas transportation system, and to cope with climate change preemptively. In recent years, there has been a growing interest in not only conventional membrane-based separation but also new adsorbent-based separation technology. Particularly, in the case of metal-organic frameworks (MOFs), it has been received tremendous attentions due to its unique properties (eg : flexibility, gate effect or strong binding site such as open metal sites) which are different from those of typical porous adsorbents. Therefore, in this study, stereotype of two MOFs have been selected as its flexible MOFs (MIL-53) representative and numerous open metal sites MOFs (MOF-74) representative, and compared each other for $CO_2/CH_4$ separation performance. Furthermore, varying and changeable separation performance conditions depending on the temperature, pressure or samples' unique properties are discussed.

Development of Remote Monitoring System for groundwater purifier apparatus for community wells (마을 공동 우물용 지하수 정수 장치의 원격 모니터링 시스템 개발)

  • Kim, Dong-Jin;park, Sang-heup;Lee, Hong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.224-231
    • /
    • 2019
  • Recently, the pollution of groundwater has become serious. In particular, the contamination of groundwater near livestock farms is becoming increasingly severe and it is difficult to drink with drinking water. In this paper, a groundwater purifier apparatus that can be installed in a community well was designed. The designed groundwater purifier apparatus enables a RO membrane filter and UV sterilization to remove pollutants, such as heavy metals, bacteria, and organic compounds. In addition, electrical conductivity, pressure, and flow sensors were added for remote monitoring. Remote monitoring of the system can determine the level of fouling and contamination of RO membrane filters through pressure and flow sensor data, and can record changes in the contamination and condition of groundwater through the electrical conductivity of the feed water. The designed groundwater purifier apparatus was installed at a farmhouse and remote monitoring. The result after 15 days of operating a groundwater purifier apparatus and analyzing the monitoring data revealed an average permeate water flow rate of 2.67L/min and an average water pressure of 7.09kgf/㎠, indicating that the RO Membrane filtered without fouling and clogging. The average electrical conductivity was 796.6 S/㎠ of the feed water and 55.6 S/㎠ of permeate water, which is similar to that of general tap water. Through this, it was confirmed that no pollutant occurred in the surroundings. Therefore, the designed groundwater purifier apparatus can confirm the replacement time of the RO membrane filter in advance through remote monitoring, and check the pollution state of the groundwater.