• Title/Summary/Keyword: 메탄 생산

Search Result 352, Processing Time 0.033 seconds

메탄생성에 따른 수소 생성 억제 현상

  • Kim, Jeong-Ok;Kim, Yong-Hwan;Ryu, Jeong-Yong;Song, Bong-Geun;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.404-408
    • /
    • 2003
  • In this study, hydrogen gas produced by anaerobic mocrobial at anaerobic condition. To maintain the high MLSS concentration, anaerobic sludge was transformed to granular sluge by adding both high molecular cationic polymer(M.W>5,000,000) and silica sol. Hydrogen production was easily distributed, which seemed caused by methane producing microbial. Even low pH control(pH<5.5) was not the effective mean to block methane producing microbial. To decrease of $H_2$ production was closely related with the inclose of $CH_4$ production. Other mean expect for pH control must be devised for the efficient $H_2$ production.

  • PDF

메탄생성에 따른 수소 생성 억제 현상

  • Kim, Jeong-Ok;Kim, Yong-Hwan;Ryu, Jeong-Yong;Song, Bong-Geun;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.339-342
    • /
    • 2003
  • In this study , hydrogen gas produced by anaerobic mocrobial at anaerobic condition. To maintain the high MLSS concentration, anaerobic sludge was transformed to granular sluge by adding both high molecular cationic polymer(M.W.>5,000,000) and silica sol. Hydrogen production was easily distributed, which seemed caused by methane producing microbial. Even low pH control(pH<5.5) was not the effective mean to block methane producing microbial. To decrease of $H_2$ production was closely related with the inclose of $CH_4$ production. Other mean expect for pH control must be devised for the efficient $H_2$ production.

  • PDF

Biogas Production by Anaerobic Co-digestion of Livestock Manure Slurry with Fruits Pomace (가축분뇨와 과실착즙박의 혼합 혐기소화에 따른 바이오가스 생산)

  • Byeon, Jieun;Ryoo, Jongwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.5-13
    • /
    • 2019
  • This study is conducted to investigate the effects of anaerobic treatments of swine manure slurry alone and combination of livestock manure slurry and fruit pomace on biogas production. Anaerobic co-digestion was evaluated in mesophilic tank reactors for 96 day-incubation period. The organic matter loading of anaerobic digestion was 1 kg of volatile solids(VS) per $1m^3{\cdot}day$. The highest methane production was achieved from the combination of swine manure slury and mandarin pomace(70:30) treatment, whereas the lowest daily and cumulative methane yields was observed in swine manure slurry alone treatment. More than two-fold increase in bio-gas and methane production was obtained by combination of livestock manure slurry and mandarin pomace treatment, compared to the swine manure slurry alone treatment. The co-digestion of livestock manure and fruits pomace has advantages to enhance the production of methane gas, compared to digestion of swine manure slurry alone.

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane (메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.

Effect of temperature in the distribution of production by catalytic decomposition on the carbon based catalyst (탄소계 촉매상에서 부탄 분해에 따른 생성물 분포에 미치는 온도의 영향)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin;Yoon, Ki-June;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.89-92
    • /
    • 2006
  • 수소에너지는 화석연료 사용의 증가로 인한 환경오염 및 자원고갈의 문제점을 해결해 줄 수 있는 미래의 청정한 에너지이다. 현재 주 에너지원인 화석연료의 사용에 의하여 배출된 오염물질이 지구온난화와 같은 문제점들을 일으킨다. 이러한 문제점들을 없애줄 수 있는 대안 중 하나가 수소에너지이다. 수소에너지는 자원이 풍부하며 연소시에 오염물질이 배출되지 않는 장점이 있다. 수소에너지는 수소를 연소시켜서 얻는 에너지로써, 수소를 태우면 같은 무게의 가솔린 보다 3배나 많은 에너지를 방출한다. 수소를 생산하는 방법 중 가장 이상적인 방법은 물을 분해하는 방법이다. 그러나 이 방법은 수소를 대량으로 생산하기에는 아직 기술에 대한 확보가 되어있질 않으며, 경제성도 떨어진다는 단점이 있다. 현재 많이 쓰이는 방법 중 탄화수소류의 메탄을 수증기 개질하는 방법이 있다. 메탄 수증기 개질방법은 환경오염물질인 CO나 $CO_2$를 배출한다는 것과 높은 열원이 필요하다 본 연구에서는 C-H결합에너지가 낮아 메탄보다 분해하기 쉬운 부탄의 직접분해로 수소를 생산하고자 한다. 부탄 직접분해는 환경오염물질인 CO나 $CO_2$가 발생되지 않는 장점이 있다. 부탄 분해반응은 $500{\sim}1100^{\circ}C$의 범위에서 이루어 졌으며, 촉매는 탄소계인 카본블랙을 사용하였고, 촉매의 성능을 비교하기 위하여 열분해반응이 동시에 수행되었다.

  • PDF

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae (해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석)

  • Lee, Jun-Hyeong;Kim, Tae-Bong;Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

Bio-methane production for city gas by membrane separation of digestion gas (소화가스의 막 분리 정제에 의한 도시가스용 바이오메탄 생산)

  • Choi, Keun-Hee;Jo, Min-Seok;Choi, Won-Young;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1106-1115
    • /
    • 2020
  • Research was conducted on the production of bio-methane for city gas, from food waste digestion gas using two membrane-separation methods(4SBR and 3SDR) in a commercial plant. A purity of 98.9% can be obtained using either method. The recovery rate of methane from the digestion gas was 88.1% for 4SBR and 79.4% for 3SDR. the ratios of bio-methane production to treated digestion gas were 53.5% for 4SBR and 49.4% for 3SDR. However, the 4SBR method had a higher ratio of returned gas(56.5%), approximately twice that of 3SDR, making 3SDR the more desirable method in terms of maximum treat capacity. Therefore, 4SBR seems more economical when the digestion gas to be treated is less than 200 N㎥/day, while 3SDR is more suited to treat gas volumes of more than 240 N㎥/day. The relative deviation of each operation index, compared to mean values, was generally greater for the 4SBR method. Additionally, the correlation coefficients between major system indexes, such as bio-methane production and bio-methane draw out pressure(which is the main control measure of membrane facility) showed that these indexes are more closely related in the 3SDR method.

Optimum Design on the Mixed Ratio of Injection Gas with CO2/N2 in Enhanced Coalbed Methane Recovery (석탄층 메탄가스 회수증진공법에서 CO2/N2 주입가스의 혼합 비율 최적 설계)

  • Yoo, Hyun-Sang;Kim, Young-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2017
  • Enhanced coalbed methane recovery (ECBM), as injecting $CO_2$ or $N_2$ into the coalbed methane (CBM) reservoir for increasing methane recovery, takes center stage in these days. ECBM makes a better recovery than the conventional production method, it called dewatering process. However the characteristics of injection gas affect to methane recovery, thus analysis on the mixed ratio of injection gas should be required. In this study, CBM reservoir model was built to estimate the methane recovery of ECBM method by different mixed ratio of injection gas. Additionally, to consider the characteristics of injection gas such as carbon captured storage, nitrogen re-injection, etc. economic analysis was performed. The results showed that ECBM cases produced methane almost twice as much as dewatering case and $CO_2$ 10% and $N_2$ 90% case resulted in the highest methane recovery among the mixed gas cases. On the other hand, the results of economic analysis showed that $CO_2$ 20% and $N_2$ 80% case made the highest total production profit. Therefore, both the recovery of methane and economical efficiency should be considered to apply ECBM process.

Selection Technique of Drilling, Completion, and Stimulation Considering Reservoir Characteristics of Coalbed Methane Reservoir, Indonesia (인도네시아 석탄층 메탄가스(CBM) 저류층 특성을 고려한 시추·완결·자극 기법 선정 연구)

  • Choi, Jun Hyung;Han, Jeong-Min;Lee, Dae Sung
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2014
  • We investigated reservoir properties of coalbed methane and typical development of drilling, completion, and stimulation methods. We optimized selection technique for development methods by consifering characteristics of coalbed methane resercoir in the San Juan, Black Warrior and Powder River basins of United States. Finally, well-optimized development methods for coalbed methane in the Barito Basin, Indonesia are suggested. This study may be useful to select economical and efficient drilling, completion, and stimulation methods in coalbed methane development especially in Indonesia.

The effect of Fe on the $Ni_x-Fe_{1-x}/Al_2O_3$catalysts for $CO_2$ methanation of SNG process ($Ni_x-Fe_{1-x}/Al_2O_3$계 촉매의 함량이 $CO_2$ 메탄화반응에 미치는 영향)

  • Kang, Sukhwan;Ryu, Jaehong;Kim, Jinho;Lee, Sunki;Yoo, Youngdon;Byun, Changdae;Lim, Hyojun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.117-117
    • /
    • 2010
  • 석탄 가스화에서 유도된 합성가스는 합성반응 공정을 통하여 합성석유, 메탄올(& DME), 합성천연가스(SNG) 등의 다양한 화학원료를 제조할 수 있어 이의 활용이 점차적으로 확대될 것이다. 이 중 SNG 공정의 경우, 석탄가스화기에서 생산된 합성가스는 집진, 탈황, 수성가스전환($H_2$/CO 비를 조절), $CO_2$ 제거 등의 공정을 거쳐 메탄화 반응기로 유도되는데, 메탄화 반응에서 $CO_2$가 반응에 참여하면 탄소포집 및 저장(CCS)의 부담을 크게 줄일 수 있어 이에 대한 관심이 커지고 있다. 특히, 상업용으로 활용되고 있는 단열반응기를 직렬로 연결할 경우, 메탄화반응의 발열로 인한 반응기내의 온도 상승으로 $CO_2$가 생성되는데 이후의 2차 또는 3차의 단열반응기에서 $CO_2$ 수소화반응이 진행되면 최종 생성물인 메탄의 수율이 증가하며, 뿐만아니라 생성물 중 포함된 수소의 농도를 낮출 수 있는 장점을 가지게 된다. 따라서, 본 연구에서는 Ni계 촉매를 사용하여 풍부한 $H_2$ 분위기에서 Fe를 첨가하여 이의 함량이 $CO_2$ 수소화반응의 탄소 전환율과 생성되는 메탄의 수율에 미치는 영향을 고찰하였다.

  • PDF