• Title/Summary/Keyword: 메탄의 수증기 개질

Search Result 100, Processing Time 0.029 seconds

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst (니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사)

  • Lee, HongJin;Kim, Woohyun;Lee, Kyubock;Yoon, Wang Lai
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.914-920
    • /
    • 2018
  • The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to $750^{\circ}C$ and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.

Heat Transfer Characteristic of the Spiral Type Solar Chemical Reactor (수치해석을 통한 Spiral 형상 화학 반응기의 열전달 특성)

  • Jung, Young-Guk;Lee, Jin-Gyu;Lee, Ju-Han;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2010
  • The purpose of the research is to develop the high performance solar chemical reactor for producing hydrogen using steam reforming reaction of methane. A specific shape chemical reactor is suggested : spiral type reactor. The reactor is installed on the dish-type solar thermal system of Inha University. The temperatures, $CH_4$ conversion rates, and Hz proportion are measured. At specific condition, $CH_4$ conversion rates of the spiral type reactor are about 91%, and Hz proportion are about 66%. The spiral type reactor gives reasonably good performance without any problems caused by highly concentrated solar radiation.

Analysis of Heat Transfer Performance for a Solar Chemical Reactor (고온 태양열 화학 반응기의 열전달 성능 분석)

  • Jung, Young-Guk;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.55-60
    • /
    • 2009
  • The purpose of the research is to develop the high performance solar chemical reactor for producing hydrogen using steam reforming reaction of methane. A specific shape chemical reactor is suggested: spiral type reactor. The reactor is installed on the dish-type solar thermal system of Inha University. The temperatures, $CH_4$ conversion rates are measured. At specific condition, $CH_4$ conversion rates of the spiral type reactor are about 92%. The spiral type reactor gives reasonably good performance without any problems caused by highly concentrated solar radiation.

  • PDF

Performance Analysis of Heat Transfer Characteristic and Hydrogen Product for Dish Type Solar Chemical Reactor (접시형 고온 태양열 화학 반응기의 열전달 및 수소생산 성능 분석)

  • Yang, Seung-Bok;Go, Man-Seok;O, Sang-Jun;Seo, Tae-Beom
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.774-779
    • /
    • 2009
  • The purpose of this research is to develop the high performance of solar chemical reactor for producing hydrogen by methane reforming reaction with steam. Two shape of chemical reactor is suggested: first type is filled with porous material and second type is spiral type. These reactors is installed on the dish-type thermal system of Inha University, Inha Dish-1. Performance analysis of these two reactors is conducted from getting methane conversion.

  • PDF

Numerical Investigation on Combustion, Heat Transfer and Reforming Reaction for Methane Steam Reformer (메탄 수증기 개질반응기에서 연소, 열전달 및 개질반응 특성 연구)

  • Seo, Yong-Seog;Seo, Dong-Joo;Seo, Yu-Taek;Yoon, Wang-Lai
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.50-57
    • /
    • 2005
  • The aim of this study is to numerically investigate a compact reformer system currently under development and to design a better reforming system with more efficient heat transfer and reforming reactions. Numerical models were established separately for both the combustion part and the reforming reaction part. A comparison between the calculation results and experimental data showed that the concentration of the reformate at the exit of the reforming system was in good agreement with the measured data, but for the temperature at the exit little difference between them was found. After checking the validity of the numerical models, the heat transfer between the combustion gas and reforming catalysts was estimated and the behavior of the catalyst bed was investigated as a function of the operation parameters.

  • PDF

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming (암모니아 용액 처리에 의한 Ru-Ni/Al2O3 촉매의 메탄 수증기 개질 반응에 미치는 영향)

  • Lee, Jung Won;Jeong, Jin Hyeok;Seo, Dong Joo;Seo, Yu Taek;Seo, Yong Seog;Yoon, Wang Lai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.

Technical Trends of Hydrogen Manufacture, Storage and Transportation System for Fuel Cell Vehicle (연료전지자동차용 수소제조와 저장·운반기술동향)

  • Kil, Sang-Cheol;Hwang, Young-Gil
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2016
  • The earth has been warming due to $CO_2$ gas emissions from fossil fuel cars and a ship. So the hydrogen fuel cell vehicle(FCV) using hydrogen as a fossil fuel alternative energy is in the spotlight. Hyundai Motor Company of Korea and a car companies of the US, Japan, Germany is developing a FCV a competitive. Obtained hydrogen as a by-product of the coke plant, oil refineries, chemical plants of steel mill, coal is reacted with steam at high temperatures, methane gas, manufacture of high purity hydrogen Methane Steam Reforming and hydrogen detachable reforming method using the Pressure Swing Adsorption or Membrane Reforming technical or decomposition of water to produce electricity. Hydrogen is the electronic industry, metal and chemical industries, which are used as rocket fuel, etc. are used in factories, hospitals, home of the fuel Ene.Farm system or FCV. And a method of storing hydrogen is to store liquid hydrogen and a method for compressing normal hydrogen to the hydrogen container, by storing the latest hydride or Organic chemical hydride method is used to carry the hydrogen station. Korea is currently 13 hydrogen stations in place and in operation, plans to install a further 43 places.

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships (LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production (에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석)

  • Kim, Kyoung-Suk;Park, Chan-Hyun;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.243-247
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by ethylene glycol steam reforming. Various reaction conditions of temperatures(300~1,600 K), feed compositions(steam/carbon= 0.5~4.5), and pressures(1~30 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 500 K. An increase of steam to carbon ratio(S/C) in feed mixture over 1.0 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.