• Title/Summary/Keyword: 메탄의 수증기개질

Search Result 100, Processing Time 0.023 seconds

A Study on PSA Controll Strategy for Part Load Operation of a Hydrogen Generator (수소추출기의 부분부하 운전을 위한 PSA 제어전략에 대한 연구)

  • SANGHO LEE;SEONYEOB KIM;YOUNG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.819-826
    • /
    • 2022
  • Fuel cell systems are being supplied to households and buildings to reduce greenhouse gases. The fuel cell systems have problems of high cost and slow startup due to fuel processors. Greenhouse gas reduction of the fuel cell systems is also limited by using natural gas. The problems can be solved by using a hydrogen generator consisting of a reformer and pressure swing adsorption (PSA). However, part load operation of the hydrogen generator is required depending on the hydrogen consumption. In this paper, PSA operation strategies are investigated for part load of the hydrogen generator. Adsorption and purge time were changed in the range of part load ratio between from 0.5 to 1.0. As adsorption time increased, hydrogen recovery increased from 29.09% to 48.34% at 0.5 of part load ratio. Hydrogen recovery and hydrogen purity were also improved by increasing adsorption and purge time. However, hydrogen recovery dramatically decreased to 35.01% at 0.5 of part load ratio.

Analysis of a Hydrogen Generation Membrane Reactor (수소 생산용 막반응기의 해석)

  • Kim Hyung Gyu;Suh Jung Chul;Baek Young Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.16-23
    • /
    • 2004
  • A membrane reactor concept, which combines the typical characteristics of chemical reaction with separation process, has been analyzed and simulated in this study. The advantages of the use of a membrane reactor include chemical equilibrium shift towards higher reactant conversion and purer product than the traditional reactors. A membrane reactor model which incorporates a catalytic reaction zone and a separation membrane is proposed. The water-gas shift reaction to produce hydrogen was chosen as a model reaction to be investigated. The membrane reactor is divided into smaller parts by number of n and each part (named cell), which contains both reaction and product separation function is modeled. One of the membrane outlet streams is connected to the next cell, which is repeated up to the last cell. The simulation results can be used for various purposes including decision of optimum operating condition and membrane reactor design.

  • PDF

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor (분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석)

  • Lee, Boreum;Lim, Hankwon
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

Study on the Characteristics of Catalyst Reaction for Hydrogen Recovery from Nuclear Fusion Exhaust Gas (핵융합 배가스 중 수소 회수를 위한 촉매반응 특성 연구)

  • JUNG, WOOCHAN;JUNG, PILKAP;KIM, JOUNGWON;MOON, HUNGMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.402-408
    • /
    • 2015
  • In D-T fusion reaction, $D_2$ (duterium) and $T_2$(tritium) are used as fuel gas. The exhaust gas of nuclear fusion includes hydrogen isotopes $Q_2$ (Q means H, D or T), tritiated components ($CQ_4$ and $Q_2O$), CO, $CO_2$, etc. All of hydrogen isotopes should be recovered before released to the atmosphere. This study focused on the recovery of hydrogen isotopes from $CQ_4$ and $Q_2O$. Two kinds of experiments were conducted to investigate the catalytic reaction characteristics of SMR (Steam Methane Reforming) and WGS (Water Gas Shift) reactions using Pt catalyst. First test was performed to convert $CH_4$ into $H_2$ using 6% $CH_4$, 6% CO/Ar feed gas. In the other test, 100% CO gas was used to convert $H_2O$ into $H_2$ at various reaction conditions (reaction temperature, S/C ratio, GHSV). As a result of the first test, $CH_4$ and CO conversion were 41.6%, 57.8% respectively at $600^{\circ}C$, S/C ratio 3, GHSV $2000hr^{-1}$. And CO conversion was 72% at $400^{\circ}C$, S/C ratio 0.95, GHSV $333hr^{-1}$ in the second test.

Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency (수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율)

  • Kim, Kyu-Sik;Kang, Tae-Hoon;Kong, Man Sik;Park, Man-Ho;Yun, Jung-Yeul;Ahn, Ji Hye;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

Conceptual Design and Hydrodynamic Properties of a Moving Bed Reactor for Intrinsic $CO_2$ Separation Hydrogen Production Process ($CO_2$ 원천분리 수소 제조 공정을 위한 이동층 반응기의 개념 설계 및 수력학적 특성)

  • Park, Dong-Kyoo;Cho, Won-Chul;Seo, Myung-Won;Go, Kang-Seok;Kim, Sang-Done;Kang, Kyoung-Soo;Park, Chu-Sik
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • The intrinsic $CO_2$ separation and hydrogen production system is a novel concept using oxidation and reduction reactions of oxygen carrier for both $CO_2$ capture and high purity hydrogen production. The process consists of a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). The natural gas ($CH_4$) is oxidized to $CO_2$ and steam by the oxygen carrier in FR, whereas the steam is reduced to hydrogen by oxidation of the reduced oxygen carrier in SR. The oxygen carrier is fully oxidized by air in AR. In the present study, the chemical looping moving bed reactor having 200 L/h hydrogen production capacity is designed and the hydrodynamic properties were determined. Compared with other reactors, two moving bed reactors (FR, SR) were used to obtain high conversion and selectivity of the oxygen carrier. The desirable solid circulation rates are calculated to be in the range of $20{\sim}100kg/m^2s$ from the conceptual design. The solid circulation rate can be controlled by aeration in a loop-seal. To maintain the gas velocity in the moving beds (FR, SR) at the minimum fluidization velocity is found to be suitable for the stable operation. The solid holdup in moving beds decrease with increasing gas velocity and solid circulation rate.

Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC (용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독)

  • Moon, Hyeung-Dae;Kim, Joon-Hee;Ha, Heung Yong;Lim, Tae-Hoon;Hong, Sung-Ahn;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.754-760
    • /
    • 1999
  • The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and $H_2$ chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses.

  • PDF

Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network (유틸리티 네트워크와 수소 공급망 통합 네트워크 설계를 위한 결정론적 최적화 모델 개발)

  • Hwangbo, Soonho;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.603-612
    • /
    • 2014
  • Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network.

The Effect of Calcination Temperature on the Performance of Ni-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane under Severe Conditions (가혹한 조건의 SRM 반응에서 Ni-Ce0.8Zr0.2O2 촉매의 소성온도에 따른 영향)

  • Jang, Won-Jun;Jeong, Dae-Woon;Shim, Jae-Oh;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.213-218
    • /
    • 2012
  • Steam reforming of methane (SRM) is the primary method to produce hydrogen. Commercial Ni-based catalysts have been optimized for SRM with excess steam ($H_2O/CH_4$ > 2.5) at high temperatures (> $700^{\circ}C$). However, commercial catalysts are not suitable under severe conditions such as stoichiometric steam over methane ratio ($H_2O/CH_4$ = 1.0) and low temperature ($600^{\circ}C$). In this study, 15wt.% Ni catalysts supported on $Ce_{0.8}Zr_{0.2}O_2$ were prepared at various calcination temperatures for SRM at a very high gas hourly space velocity (GHSV) of $621,704h^{-1}$. The calcination temperature was systematically varied to optimize 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst at a $H_2O/CH_4$ ratio of 1.0 and at $600^{\circ}C$. 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ exhibited the highest $CH_4$ conversion as well as stability with time on stream. Also, 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ showed the highest $H_2$ yield (58%) and CO yield (21%) among the catalysts. This is due to complex NiO species, which have relatively strong metal to support interaction (SMSI).

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas (핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석)

  • Jung, Woo-Chan;Jung, Pil-Kap;Kim, Joung-Won;Moon, Hung-Man;Chang, Min-Ho;Yun, Sei-Hun;Woo, In-Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.169-175
    • /
    • 2018
  • This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.