Browse > Article
http://dx.doi.org/10.7316/KHNES.2015.26.5.402

Study on the Characteristics of Catalyst Reaction for Hydrogen Recovery from Nuclear Fusion Exhaust Gas  

JUNG, WOOCHAN (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.)
JUNG, PILKAP (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.)
KIM, JOUNGWON (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.)
MOON, HUNGMAN (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.26, no.5, 2015 , pp. 402-408 More about this Journal
Abstract
In D-T fusion reaction, $D_2$ (duterium) and $T_2$(tritium) are used as fuel gas. The exhaust gas of nuclear fusion includes hydrogen isotopes $Q_2$ (Q means H, D or T), tritiated components ($CQ_4$ and $Q_2O$), CO, $CO_2$, etc. All of hydrogen isotopes should be recovered before released to the atmosphere. This study focused on the recovery of hydrogen isotopes from $CQ_4$ and $Q_2O$. Two kinds of experiments were conducted to investigate the catalytic reaction characteristics of SMR (Steam Methane Reforming) and WGS (Water Gas Shift) reactions using Pt catalyst. First test was performed to convert $CH_4$ into $H_2$ using 6% $CH_4$, 6% CO/Ar feed gas. In the other test, 100% CO gas was used to convert $H_2O$ into $H_2$ at various reaction conditions (reaction temperature, S/C ratio, GHSV). As a result of the first test, $CH_4$ and CO conversion were 41.6%, 57.8% respectively at $600^{\circ}C$, S/C ratio 3, GHSV $2000hr^{-1}$. And CO conversion was 72% at $400^{\circ}C$, S/C ratio 0.95, GHSV $333hr^{-1}$ in the second test.
Keywords
Nuclear fusion; Hydrogen isotopes; Tritiated component; Platinum catalyst; SMR; WGS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. H. Yun, S. Y. Cho, H. G. Lee, and K. J. Jung, "ITER project - introduction of tritium fuel cycle technology", News & Information for Chemical Engineers, Vol. 33, No. 1, 2015, pp. 28-33.
2 W. C. Jung, P. K. Jung, J. W. Kim, and H. M. Moon, "Technology for Hydrogen isotopes recovery from nuclear fusion exhaust gas", News & Information for Chemical Engineers, Vol. 33, No. 1, 2015, pp. 43-49.
3 K. M. Song, S. H. Sohn, H. S. Chung, S. H. Yun, and K. J. Jung, "Tritium Fuel Cycle of the International Thermonuclear Experimental Reactor", Korean Chem. Eng. Res., Vol. 50, No. 4, 2012, pp. 595-603.   DOI
4 S. H. Yun, M. H. Chang, H. G. Kang, C. S. Kim, S. Y. Cho, K. J. Jung, H. S. Chung, and K. M. Song, "Tritium Fuel Cycle Technology of ITER Project", Trans. of the Korean Hydrogen and New Energy Society, 2012, Vol. 23, No. 1, pp. 56-64.   DOI
5 M. Glugla, R. Lasser, L. Dorr, D. K. Murdoch, R. Haange, and H. Yoshida, "The inner deuterium /tritium fuel cycle of ITER", Fusion Engineering and Design, Vol. 69, 2003, pp. 39-43.   DOI
6 Y. C. Bak, and K. J. Cho, "Status for the Technology of Hydrogen Production from Natural Gas", Korean Chem. Eng. Res., Vol. 43, No. 3, 2005, pp. 344-351.
7 D. J. Moon, and B. G. Lee, "R&D Trends and Unit Processes of Hydrogen Station", Korean Chem. Eng. Res., Vol. 43, No. 3, 2005, pp. 331-343.