DOI QR코드

DOI QR Code

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas

핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석

  • Jung, Woo-Chan (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • Jung, Pil-Kap (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • Kim, Joung-Won (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • Moon, Hung-Man (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • Chang, Min-Ho (National Fusion Research Institute) ;
  • Yun, Sei-Hun (National Fusion Research Institute) ;
  • Woo, In-Sung (Department of Safety Engineering, Incheon National University)
  • 정우찬 (대성산업가스(주) 초저온연구소) ;
  • 정필갑 (대성산업가스(주) 초저온연구소) ;
  • 김정원 (대성산업가스(주) 초저온연구소) ;
  • 문흥만 (대성산업가스(주) 초저온연구소) ;
  • 장민호 (국가핵융합연구소) ;
  • 윤세훈 (국가핵융합연구소) ;
  • 우인성 (인천대학교 안전공학과)
  • Received : 2017.08.14
  • Accepted : 2017.11.21
  • Published : 2018.04.01

Abstract

This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.

본 연구는 핵융합 배가스 중 삼중수소가 포함된 화합물인 메탄($CQ_4$) 및 물($Q_2O$)로부터 수소동위원소를 회수하기 위한 공정에 관한 것이다(Q는 수소, 중수소, 삼중수소). 수증기-메탄 개질반응과 수성가스 전환반응을 이용하여 $CQ_4$$Q_2O$$Q_2$로 변환시키고, 후속하는 팔라듐 분리막으로 생성된 $Q_2$를 회수한다. 본 연구에서는 $CQ_4$$Q_2O$ 중 하나의 물질인 $CH_4$$H_2O$로부터 수소 회수를 위해 촉매반응기, 팔라듐 분리막, 순환펌프로 구성된 순환루프를 적용하였다. 촉매반응온도 및 순환유량을 변화시켜가며 $CH_4$$H_2O$의 전환율을 측정하였다. $CH_4$ 중 수소 회수는 촉매반응온도 $650^{\circ}C$, 순환유량 2.0 L/min 조건에서 99% 이상의 $CH_4$ 전환율을확인하였고, $H_2O$ 중수소 회수는촉매반응온도 $375^{\circ}C$, 순환유량 1.8 L/min 조건에서 96% 이상의 $H_2O$ 전환율을 확인하였다. 이와 더불어, 향후 핵융합 실증로(K-DEMO)에서의 $CQ_4$ 발생량을 예측하고, 이에 대한 처리공정을 제안하였으며, HAZOP (Hazard and Operability) 분석을 실시하여 공정의 위험요소와 운전상의 문제점을 도출하고 해결방안을 제시하였다.

Keywords

References

  1. Yun, S. H., Cho, S. Y., Lee, H. G. and Jung, K. J., "ITER project - Introduction of Tritium Fuel Cycle Technology," News & Information for Chemical Engineers, 33(1), 28-33(2015).
  2. Jung, W. C., Jung, P. K., Kim, J. W. and Moon, H. M., "Hydrogen Isotopes Recovery Technology from Nuclear Fusion Exhaust Gas," News & Information for Chemical Engineers, 33(1), 43- 49(2015).
  3. Jung, W. C., Jung, P. K., Kim, J. W. and Moon, H. M., "Study on the Characteristics of Catalyst Reaction for Hydrogen Recovery from Nuclear Fusion Exhaust gas," Trans. of the Korean Hydrogen and New Energy Society, 26(5), 402-408(2015). https://doi.org/10.7316/KHNES.2015.26.5.402
  4. http://www.iterkorea.org/030101.
  5. Kim, K., Im, K., Kim, H. C. and Oh, S., "Design Concept of KDEMO for Near-term Implementation," Nucl. Fusion, 55(2015).
  6. Scott Willms, "Tritium Technology for ITER," IAEA DEMO Workshop, Nov, Karlsruhe (2016).
  7. Lee, N. W., Kim, J. H. and Baek, J. B., Safety Assessment for Industrial Safety Technicians, Dongwha Technology Publishing, Paju(2009).