• Title/Summary/Keyword: 메타카올린

Search Result 79, Processing Time 0.033 seconds

Evaluation on the Performance of Concrete Containing Metakaolin (메타카올린 혼입 콘크리트의 성능 평가)

  • Won, Jong-Pil;Kwon, Youn-Sung;Lee, Chan-Min;Kim, Wan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.153-156
    • /
    • 2002
  • The purpose of this research was to evaluate on the properties of fresh and hardened high-performance concrete(HPC) incorporating high-reactivity metakaolin(HRM). Setting time, heat of hydration, compressive strength, resistance to chloride-ion penetration, and repeated freezing and thawing test were carried out in order to investigate the properties of fresh and hardened state concrete. The properties of the HRM concrete were also compared with those of the portland cement concrete and silica fume(SF) concrete. The laboratory test results indicate that HRM material can be used as a supplementary cementitious material to produce high-performance concrete.

  • PDF

Strength Properties of Mortar Containg Metakaolin (메타카올린을 혼합한 모르타르의 강도특성)

  • Moon, Dae-Joong;Ju, Jae-Eok;Jo, Jeong-Hyun;Kang, Hyun-Jin;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.639-642
    • /
    • 2005
  • Main components of metakaolin(MK) were $SiO_2\;and\;Al_2O_3$. and specific surface was 2.2 times larger than that of ordinary portland cement(OPC). MK indicated the fine particle and fiber texture. Flow value of mortar with MK was decreased linearly each $13\%$ as the replacement ratio of MK was increased each $5\%$. Compressive strength of mortar with MK was increased more than that of mortar with OPC by 3days. Compressive strength of mortar with $10\%$ MK was about 83MPa at 28 days. When MK was replaced with $10\%$ of cement volume, flexural strength and modulus of elasticity of mortar was indicated the maximum value at 28 days.

  • PDF

A Study on the Strength Feature of Metakaolin (메타카올린의 강도특성에 대한 연구)

  • 문수동;이상호;문한영;염준환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we studied the properties of fresh concrete such as slump-flow, air content, and the feature of strength of hardened concrete according to the substitute ratio of metakaolin, silica-fume. In the fresh concrete test, the time depend loss of slump-flow & air content is good to 10-15% substitute ratio of metakaolin. And, in the strength test, 10-15% substitute ratio of metakaolin is good for producing high-strength concrete also. But, allowing for economical efficiency, we concluded that 10% is a adequate substitute ratio for producing high performance concrete.

  • PDF

A Study on the Strength Properties of Concrete Containing Meta-Kaolin (메타카올린을 사용한 콘크리트의 강도특성에 관한 연구)

  • 김진만;이상수;김동석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.47-52
    • /
    • 2003
  • This study was performed to investigate the flow behavior of fresh concrete. strength properties, and durability properties on the chloride penetration resistance of hardened concrete containing Meta-Kaolin(MK) in the range from common strength to high strength to facilitate the use. The results are compared with properties of concrete containing Si1ca Fume(SF). As a result. superplasticizer required in MK concrete was decreased by 8-28% compared to SF concrete with the same slump, but MK concrete became more sticky than SF concrete. It was also found that considering the strength, the optimal cement replacement ratio of MK was 15%, and MK had concrete durable and dense by decreasing the average pore diameter of concrete.

  • PDF

Bond Behavior of Carbon Fiber Polymer Reinforced Polymer Rebar in High Strength Concrete with Replacement Ratio of Silica Fume and Metakaolin (실리카퓸 및 메타카올린 치환률에 따른 고강도 콘크리트와 탄소섬유보강 폴리머 보강근의 부착거동)

  • Park, Chan-Gi;Won, Jong-Pil;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.51-60
    • /
    • 2008
  • This study is to relate the bond characteristics of CFRP rebar in high strength concrete incorporated with silica fume(SF) and metakaolin(MK). An direct bond test were performed to evaluate the effect of SF and MK on bond properties of high-strength concrete and CFRP rebar. The high strength concrete mix included four SF and MK mixes with 0%, 5%, 10% and 15%. Results of bond performance experiment in relation to pullout vs slip behavior of FRP rebar and high strength showed better performance of SF than MK. Also, the results showed the improved bond strength as replacement ratio of SF and MK increased. The relative bond strength in which $1.3{\sim}3.2$ of estimated values were obtained.

Development of the inorganic which uses the Fly-ash and Meta-kaolin (플라이애쉬와 메타카올린을 사용한 무기결합재의 개발)

  • Jung, Suk-Jo;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.433-436
    • /
    • 2005
  • The Fly-ash makes an Alumino-silicate gel when it mixes an alkali or a silicate solution. This Alumino-silicate gel is produced to the activation of an alkali silicate. And this act to the binder and makes a combine of particles. This study involved mechanical strengths of an Alumino-silicate Gel based the Fly-ash with an alkali solution. NaOH, KOH were utilized to an alkali solution. The alkali solution concentration was varied from 6 to 12M and the some added also the Meta-kaolin, Waterglass so that it made high the mechanical performance. Based on the experimental result, the compressive strengths increased as the quantity of the Meta-kaolin increased. And a mechanical strengths appeared according to the concentration of an alkali solution so that it was different. XRD, FT-IR have been used to characterize mechanical performance.

  • PDF

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

An Analysis of the Air Void Volume Image Analysis of Porous Cement Mortar Composites (Image analysis를 통한 다공성 시멘트 모르타르 복합체 내 공극량 산출)

  • Son, Dasom;Yi, Chong ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.211-212
    • /
    • 2021
  • This study was conducted to derive quantitative air void volume calculation techniques in various complexes with porosity. Calculation of voids in a complex is an essential factor in improving mechanical properties, and quantitative measurement techniques are needed because the environment is not constant to apply the currently used ASTM criteria. Using the analysis technique obtained through 2D image analysis, it is believed that meaningful results can be derived through Micro CT analysis results and cross-check later.

  • PDF

Preventive Measures on Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응 방지 대책)

  • Jun Ssang-Sun;Lee Hyo-Min;Seo Ki-Young;Hwang Jin-Yeon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.129-137
    • /
    • 2005
  • In Korea, due to the insufficiency of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-silica reaction of the crushed stones. The reaction produces an alkali-silica reaction gel which can imbibe pore solution and swell to generate cracks that are visible In affected concrete. In general, crushed stones are tested by petrograptuc examination, chemical method and mortar-bar method, but the most reliable method Is mortar-bar test. This study tested alkali-silica reactivity of crushed stones of various rock types using ASTM C 227 and C 1260, and compared the results of two test methods. This study also analyzed effects of particle size and grading of reactive aggregate on alkali-silica reaction expansion of mortar-bar. The effectiveness of mineral admixtures to reduce detrimental expansion caused by alkali-silica reaction was investigated through the ASTM C 1260 method. The mineral admixtures used were nv ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and $35\%$ were commonly applied for all the mineral admixtures and the replacement ratios of 45 and $55\%$ were additional applied for the admixtures that could maintain workability. The results indicate that replacement ratios of $25\%$ for ay ash, $10\%$ for silica fume, $25\%$ for metakaolin or $35\%$ for ground granulated blast furnace slag were most effective to reduce alkali-silica reaction expansion under the experimental conditions.

A Study on the Optimization of the Mix Proportions of High Strength Concrete Fire-Resistant Reinforcement Using Orthogonal Array Table (직교배열표를 이용한 고강도콘크리트 내화성능 보강재의 배합 최적화 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2009
  • The peculiarity pointed out for high strength concrete is the occurrence of spalling during a fire. Recently, there are many efforts such as development of all types of spalling reducing materials and other innovative materials in various fields. Need is now to examine the adequate mixing proportions of these materials. This study intended to derive experimentally and statistically mix proportions that can represent the basic quality requirements as well as the optimal effects on the fire-resistance for 4 types of functional materials that are metakaolin, waste tire chip, polypropylene fiber and steel fiber. Here, the tests were planned through an optimal test method using an orthogonal array table with 4 parameters and 3 levels. The statistical analysis adopted the response surface analysis method. Results verified mutual complementary contribution between the materials when using a combination of the functional materials selected as parameters for the strengthening of the fire-resistance of 80 MPa-class high strength concrete. Besides, the optimal conditions of the fire-resistance strengthening materials derived through response surface analysis were a volumetric replacement of silica fume by 80% of metakaolin, a volumetric replacement of fine aggregates by 3% of tire waste chip, and an addition of 0.2% of the whole volume by polypropylene fiber without mixing of steel fiber. In such cases, the basic characteristics as well as the fire-resistant characteristics of high strength concrete were also satisfied.