• Title/Summary/Keyword: 메조포러스

Search Result 89, Processing Time 0.032 seconds

Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate (아세트산 에틸 제거를 위한 공침법 기반의 Cu 및 Mn 이종금속 촉매의 제조)

  • Kim, Min Jae;Yoon, Jo Hee;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 ℃) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 ℃.

Dehydration of D-Xylose into Furfural Using Propylsulfonic Acid Modified Mesoporous Silica (황산 표면개질 메조다공 실리카를 이용한 푸르푸랄 제조에 관한 연구)

  • Kim, Eun-Gyu;Kim, Saet-Byul;Park, Eun-Duck;Kim, Sang-Wook
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.95-102
    • /
    • 2010
  • Sulfonic acid (-SO3H) functionalized mesoporous silica containing HMS, SBA 15(S15), MCM 41(M41) were synthesized by post-synthesis and co-condensation method. Their catalytic performance is tested by dehydration reaction of D-xylose to furfural. As a result, good conversion and selectivity was obtained using water as an environmentally friendly solvent. Additionally, increased amounts of sulfuric acid in catalysts resulted in improved conversion of D-xylose. All of the acid-functionalized mesoporous silica showed higher selectivity than other solid acids such as ${\gamma}-Al_{2}O_{3}$ and zeolite.

Mesoporous Carbon Electrodes for Capacitive Deionization (축전식 탈염 공정을 위한 메조포러스 탄소 전극)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Carbon electrodes for capacitive deionization were fabricated through mixing two different carbon powders (activated carbon powder, carbon black) with different particle sizes to investigate physical or electrochemical properties and finally desalination performances of the electrodes with various compositions of two carbon powders in weight and were compared with the electrode consisting of activated carbon. As a result, the electrode structure became more packed as increasing the amount of carbon black and resulted in 10% increase in mesopore fraction. The specific capacitance obtained from cyclic voltammograms of various electrodes showed that the electrode containing carbon black only had 107.4 F/g, while the specific capacitance of the electrode having more amount of carbon black increased and was higher than the one having no carbon black. The results of desalination runs in a capacitive deionization cell exhibited that the electrode having the highest amount of carbon black (1 wt%) in this study had the highest desalting efficiency, and no significant pH variation was observed during the runs. It was analyzed using accumulated charge that the fraction of non-Faraday current increased as the amount of carbon black increased in the electrodes. It can be concluded that the addition of carbon black changed the electrode structure resulting in an increase in the fraction of mesopore and finally enhanced the desalting efficiency by decreasing Faraday current.

Transparent Hydrophobic Anti-Reflection Coating with SiO2\TiO2 Thin Layers (SiO2\TiO2 박막에 의한 투명 발수 반사방지 코팅)

  • Noh, Yeoung-Ah;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Functional coatings, such as anti-reflection and self-cleaning, are frequently applied to cover glass for photovoltaic applications. Anti-reflection coatings made of mesoporous silica film have been shown to enhance the light transmittance. $TiO_2$ photocatalyst films are often applied as a self-cleaning coating. In this study, transparent hydrophobic anti-reflective and self-cleaning coatings made of $SiO_2/TiO_2$ thin layers were fabricated on a slide glass substrate by the sol-gel and dip-coating processes. The morphology of the functional coatings was characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optical properties of the functional coatings were investigated using an UV-visible spectrophotometer. Contact angle measurements were performed to confirm the hydrophobicity of the surface. The results showed that the $TiO_2$ films exhibit a high transmittance comparable to that of the bare slide glass substrate. The $TiO_2$ nanoparticles make the film more reflective and lead to a lower transmittance. However, the transmittance of the $SiO_2/TiO_2$ thin layers is 93.5% at 550 nm with a contact angle of $110^{\circ}$, which is higher than that of the bare slide glass (2.0%).

In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor (광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가)

  • Ahmad, Rizwan;Kim, Jin Kyu;Kim, Jong Hak;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.328-335
    • /
    • 2017
  • Fabricating photocatalytic composite membrane with a mesoporous and tailored morphological structure would have significant implication for environmental remediation. In this study, we reported hybrid $TiO_2$ immobilized photocatalytic membrane and its application for the treatment of dye solution. Photocatalytic film with high porosity and homogeneity was fabricated by graft copolymer as polymer template. Hybridization of membrane filtration with photocatalysis was successfully achieved by photocatalytic membrane reactor developed. Result showed that membrane permeability was significantly reduced after immobilizing the $TiO_2$ film on bare $Al_2O_3$ support. The membrane characterization indicated that well organized $TiO_2$ film was successfully formed on $Al_2O_3$ support. Benefiting from the controlled morphology of $TiO_2$ film, the composite membrane exhibited almost complete degradation of organic dye within 5 h of filtration under UV illumination. Langmuir-Hinshelwood model explained degradation of organic dye. First-order rate constant was approximately six times with $TiO_2$ immobilized composite ceramic membrane, higher than the one with the bare $Al_2O_3$ support (0.0081 vs. $0.0013min^{-1}$).

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

Study for Transport and Separation Mechanisms of $CO_2/N_2$ Mixture on Organic Templating Silica/Alumina Composite Membrane by Using Generalized Maxwell Stefan model (Generalized Maxwell Stefan 모형을 이용한 유기 템플레이팅 실리카/알루미나 복합막의 $CO_2/N_2$ 혼합물의 투과/분리 기구 해석)

  • Lee Chang-Ha;Moon Jong-Ho;Kim Min-Bae;Kang Byung-Sub;Hyun Sang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.43-51
    • /
    • 2004
  • In this study, gas permeation and separation characteristics of $CO_2$ and $N_2$ on nano-porous TPABr(Tetrapropylammoniumbromide) templating silica/alumina composite membrane were studied by using GMS (Generalized Maxwell Stefan) model. Since the transport mechanisms of meso-porous alumina support are Knudsen diffusion and viscous diffusion(or poiseulle flow), they can be identified by DGM (dusty gas model). The transport mechanism of TPABr templating silica layer, which would contribute mainly to the separation of $N_2/CO_2$ mixture, showed surface diffusion rather than pore diffusion. Therefore, the oermeationjseparation mechanisms in multi-component suface diffusion were successfully analyzed by the GMS model. In the separation of $N_2/CO_2$ mixture using the composite membrane, $CO_2$, the strongadsorbate, was permeated through the membrane more than Na due to the pore-blocking phenomena of $CO_2$ by adsorption isotherm and solace diffusion.

  • PDF

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

Preparation of Porous Ceramic Bead using Mine Tailings and Its Applications to Catalytic Converter (광미(鑛尾)를 활용(活用)한 다공성 세라믹 비드 제조(製造) 및 촉매(觸媒) 변환기(變換機)로의 응용(應用))

  • Seo, Junhyung;Kim, Seongmin;Han, Yosep;Kim, Yodeuk;Lee, Junhan;Park, Jaikoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.38-45
    • /
    • 2013
  • The porous ceramic beads using mine tailing were prepared and applied to catalytic converter for NOx/SOx removal. Catalytic support was used synthesized mesoporous silica (SBA-15) which coated on surface. Internal structure for porous ceramic beads was composed of three-dimensional network structure and porosity was about 80%. In addition, the specific surface area for mesoporous silica(SBA-15) coated on converter was significantly increased 55 $m^2/g$ compared with 0.8 $m^2/g$ before coating. NOx/SOx removal experiment was performed using $V_2O_5$ and $V_2O_5$/CuO converter. NOx conversion ratio for $V_2O_5$/CuO converter was approximately increased 10% compared to $V_2O_5$ converter. In addition, catalytic converter of $V_2O_5$/CuO was shown to remove 95% of NOx and 90% of SOx at reaction temperature of $350^{\circ}C$, space velocity of 10000 $h^{-1}$ and $O_2$ concentrations of 5%, respectively.