• Title/Summary/Keyword: 메니스커스

Search Result 34, Processing Time 0.037 seconds

Studies on Fine Metal Droplet Jetting using Piezoelectric Inkjet Head (압전 잉크젯 헤드를 이용한 미세금속액적 토출 연구)

  • Park, Chang-Sung;Kim, Young-Jae;Sim, Won-Chul;Park, Jung-Hoon;Kang, Pil-Joong;Yoo, Young-Seuck;Joung, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1550-1551
    • /
    • 2007
  • 노즐 직경 $30\;{\mu}$인 MEMS 압전 잉크젯 헤드를 이용하여 Ag 나노 잉크를 PDMS 처리된 PI(Polyimide) 기판 위에 토출하였다. 구동주파수 5 KHz에서 액적부피 1.5 pl, 속도가 약 4.5 m/s인 액적이 토출 되었다. 인쇄된 액적의 크기는 직경 약 $12\;{\mu}m$이었다. 메니스커스의 거동에 맞춘 구동파형의 입력에 의해 새틀라이트 없는 매우 작은 액적을 토출할 수 있었다.

  • PDF

Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD (CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구)

  • Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF

A Study on the Wetting Properties of UBM-coated Si-wafer (UBM(Under Bump Metallurgy)이 단면 증착된 Si-wafer의 젖음성에 관한 연구)

  • 홍순민;박재용;박창배;정재필;강춘식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.55-62
    • /
    • 2000
  • The wetting balance test was performed in an attempt to estimate the wetting properties of the UBM-coated Si-wafer on one side to the Sn-Pb solder. The wetting curves of the one and both side-coated UBM layers had the similar shape and the parameters characterizing the curve shape showed the similar transition tendency to the temperature. The wetting property estimation was possible with the new wettability indices from the wetting curves of one side-coated specimen; $F_{min}$, $F_{s}t_{s}$ and $t_s$. For UBM of Si-chip, Au/Cu/Cr UBM was better than Au/Ni/Ti in the point of wetting time. The contact angle of the one side coated Si-plate to the Sn-Pb solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상 전산해석)

  • Joo, Youngcheol;Park, Sangkug;Kwon, Key-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.641-647
    • /
    • 2016
  • A drop-on-demand inkjet is used widely for various applications. Therefore, it is important to understand the jetting behavior of the drop from the piezo inkjet. In this study, to predict the jetting behavior, VOF (Volume-of-Fluid) simulation techniques were used and compared with the experimental results. The experimentally measured meniscus movement was used as the input data for the simulation. To verify the simulation, the measured jetting behavior of the mixture fluids of ethylene glycol and IPA (isopropyl alcohol), which has a mixing ratio of 50:50, was used. The numerical simulation of the drop formation using various mixture ratios and its comparison with the measured drop formation confirmed that the proposed method can predict the actual jetting. On the other hand, the satellite drop behavior showed slight differences because the small sized droplet is subject to a more aerodynamic effect during flight because the kinetic energy of the satellite droplet is far smaller than that of the main droplet.

A Narrow Band MILES Detection System With Reduced Blind Angle of Detection Using Refractors (굴절체를 이용하여 감지 사각 문제를 개선한 협대역 마일즈 감지 시스템)

  • Ki, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.10-16
    • /
    • 2012
  • In this paper, we tried to realize a next generation MILES detection system which is robust to optical noise using a narrow band interference optical filter. Applying a narrow band interference optical filter which has the wavelength range of 895~915nm to the LASER wavelength of 900nm, we could obtain detection characteristics robust to strong optical noise which can be occurred in street battles. However, the MILES detection system has the blind range of detection in the incident angle range of $30^{\circ}{\sim}90^{\circ}$. To solve this problem we proposed a method of incident angle scatter using refractors. Applying a concave meniscus lens refractor which has diopter of 5.4 to the MILES detection system, we could eliminate the blind angle of detection.

Fabrication of Superhydrophobic molecules Nanoarray by Dip-pen Nanolithography (나노리소그라피 기술을 이용한 초소수성 불소 실란 분자의 나노패턴 제조)

  • Yeon, Kyung-Heum;Kang, Pil-Seon;Kim, Kyung-Min;Lim, Jun-Hyurk
    • Journal of Adhesion and Interface
    • /
    • v.19 no.4
    • /
    • pp.163-166
    • /
    • 2018
  • Dip-pen nanolithography(DPN) is an atomic force microscope (AFM) based method of generating nano- or micro-patterns. This technique has been used to transfer various ink materials on the substrate through water meniscus formed between AFM tip and the substrate surface. In this study, the heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane (HDFDTMS) ink materials were coated on the pre-coated AFM tip surface with the HDFDTMS molecules. When the tip brought into contact with the hydroxyl-functionalized silicon surface, HDFDTMS ink molecules have been successfully transported from the tip onto the surface via water meniscus. The created array and passivation area showed stable structures on the surface, and the transport of ink materials from the AFM tip to the surface followed linear increase in pattern size with contact time.

Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin (탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가)

  • Park, Joo-Eon;Gu, Ja-Uk;Kang, Soo-Keun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Interfacial shear strength between epoxy and carbon fiber was analyzed utilizing a hemi-spherical microbond specimens adhered onto single carbon fiber. The hemi-spherical microbond specimen showed high regression coefficient and small standard deviation in the measurement of interfacial strength as compared with a droplet and an inverse hemi-spherical one. This seemed to be caused by the reduced meniscus effects and the reduced stress concentration In the region contacting with a pin-hole loading device. Finite element analysis showed that the stress distributions along the fiber/matrix interface in the hemi-spherical specimen had a stable shear stress distribution along the interface without any stress mode change. The experimental data was also different according to the kinds of loading device such as the microvise-tip and the pin-holed plate.

Autogenous Shrinkage of Cement Paste Considering Disjoining Pressure in Thin Adsorbed Region (흡착 영역 분리 압력을 고려한 시멘트페이스트의 자기 수축)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.213-218
    • /
    • 2006
  • Meniscus, adsorbed layer thickness, capillary pressure and disjoining pressure was deduced in extended meniscus region in cement paste pore by hydrostatic equilibrium. From the results, the relationship between pore size and adsorbed layer thickness could be derived and adsorbed layer thickness represents $0.299{\sim}2.700nm$ according to pore size $1nm{\sim}1{\mu}m$. Especially, disjoining pressure rapidly Increased in less than 10 nm pore size according to adsorbed layer thickness. Therefore, it is interpreted that autogenous shrinkage of cement paste is highly increases in formation of less than 10 nm pore size. Predictions of autogenous shrinkage in cement paste considering driving force for autogenous shrinkage with capillary pressure and disjoining pressure was low in comparison with experiment values between $1{\sim}4$ days and high in later period. These tendency could be thought that pore damage by mercury injection in early age makes shrinkage driving force underestimate and assumption for unsaturated independent pore makes overestimate. These interactions might be needed corrections considering on hydration or pore replacement model.

Stimulated Raman scattering at 1.54${\mu}m$ and Brillouin scattering at 1.06${\mu}m$ in $CH_4$ under 5 Hz repetition rate (반복률과 라만매질 압력에 따른 1.54 ${\mu}m$ 전방, 후방 유도라만 및 1.06${\mu}m$ Brillouin 산란광의 출력특성)

  • 최영수;전용근;김재기
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • We have studied the 1.54$\mu\textrm{m}$ forward and backward stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SRS) for various $CH_4$pressures by 1.06$\mu\textrm{m}$ Q-switched Nd:YAG laser pumping under a repetition rate of Hz in single pass. We obtained that the output of backward SRS was more efficient than that of the forward SRS. The output energy and conversion efficiency of forward and backward SRS were higher than those of SBS since SRS is a steady state, but SBS is a transient state. In a $CH_4$gas uncirculating system, the output energy of the backward SRS and SBS were reduced the about 47% due to a thermal heating of $CH_4$medium in a focusing region for a repetition rate of 5 Hz. But, the output energy of forward SRS was slightly enhanced by about 8.5% due to the increase of the undepleted pump beam in the backward SRS generation. Inthe Raman half resonator using a dichromatic focusing lens, the conversion efficiency of SRS was more than 37% for a input pump laser energy of 40 mJ.

  • PDF

Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixture (광물질 혼화재를 함유한 고성능 콘크리트의 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok;Kim, Yong-Hyok;Kim, Young-Ook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.19-31
    • /
    • 2007
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio and containing fly ash and blast furnace slag. Internal humidity change and shrinkage strain were about 10%, 10%, 7%, 11%, 11% and $320{\times}10^{-6}$, $270{\times}10^{-6}$, $231{\times}10^{-6}$, $371{\times}10^{-6}$, $350{\times}10^{-6}$ respectively on OPC30, O30F10, O30F20, O30G40, O30G50 and from the results, fly ash made humidity change and strain decrease but slag increase comparing with ordinary portland cement. Considering only relation internal humidity and shrinkage by self-desiccation, humidity change and shrinkage represented the strong linear relation regardless of mineral admixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.