• Title/Summary/Keyword: 멀티로터

Search Result 26, Processing Time 0.018 seconds

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots (멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구)

  • Kim, Hyeon;Jeong, Heon Sul;Chong, Kil To;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

Study for Aerodynamic and Aeroacoustic Characteristics of Multirotor Configurations Considering the Wake Interaction Effect (멀티로터형 비행체의 후류 상호작용을 고려한 공력 및 공력소음 해석 연구)

  • Ko, Jeongwoo;Kim, Dong Wook;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.469-478
    • /
    • 2019
  • Multirotor configurations such as VTOL and urban air mobility have been focused on today due to the high maneuverability. Aerodynamic and aeroacoustic characteristics of multirotor have much difference to those of a single rotor. In this study, a numerical analysis based on the free wake vortex lattice method is used for identifying the wake interaction effect. In order to compare the various configurations and operating conditions, the effects of the spacing between the rotors in hovering flight and the effects of the advancing ratio and the formation in forward flight are discussed. In the hovering flight, the unsteady loading of multirotor changes periodically and loading fluctuation increases as decreasing the spacing. It causes the variation in unsteady loading noise and the noise directivity pattern. In the forward flight, the difference in loading fluctuation and noise characteristics are observed according to the diamond and square formation of rotors. By comparing with results of single rotor analysis, multirotor configurations have different directivity pattern and amplitude of loading noise according to the location of each rotor. As a result, wake interaction effect becomes a highly important factor for aerodynamic and aeroacoustic analysis according to multirotor configurations and operating conditions.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Design and Validation of Low-cost Flight Control Computer for Multi-rotor UAVs (저가 하드웨어 기반 멀티로터 비행제어 컴퓨터 설계 및 검증)

  • Lee, Dasol;Shim, David Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.401-408
    • /
    • 2017
  • This paper describes development and validation processes of a low-cost hardware based flight control computer designed for multi-rotor UAVs. The developed flight control computer controls multi-rotors stable and can handle complex flight missions using an integrated high-performance Linux computer. A complementary filter generates a navigation solution with 500 Hz, and a proposed observer significantly reduces measurement noise. A control algorithm utilizes a feed-forward term computed by a three-dimensional curve fitting method, and it increases tracking performance. The developed flight control system has been fully tested through several test flights, and it can apply to real flight environments.

Multicopter System modeling using parameter estimation (파라미터 추정기법을 이용한 회전익 멀티로터 시스템 모델링)

  • Jo, Wan-Seok;Lee, Myeong-Hwa
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.26-29
    • /
    • 2016
  • 본 논문에서는 멀티로터 시스템의 모델리을 위한 방법으로 파라미터 추정법을 제시하였으며 이를 위해 실제 비행데이터를 이용한다. 파라미터 추정법으로는 예측오차 기법과 순화최소자승법이 사용되었고 그 결과를 나타내었다.

  • PDF

Design and Fabrication of Multi-rotor system for Vision based Autonomous Landing (영상 기반 자동 착륙용 멀티로터 시스템 설계 및 개발)

  • Kim, Gyou-Beom;Song, Seung-Hwa;Yoon, Kwang-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.141-146
    • /
    • 2012
  • This paper introduces development of multi-rotor system and vision based autonomous landing system. Multi-rotor platform is modeled by rigid body motion with Newton Euler concept. Also Multi-rotor platform is simulated and tuned by LQR control algorithm. Vision based Autonomous Landing system uses a single camera that is mounted Multi-rotor system. Augmented reality algorithm is used as marker detection algorithm and autonomous landing code is test with GCS for the precision landing.

Intelligent Surveillance System using Kinect sensor and Multirotor (키넥트 및 멀티로터를 이용한 지능형 감시 시스템)

  • Oh, Jung-hak;Yu, Do-jun;Goo, Ha-neul;Kim, Ho-sung;Kim, Seong-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.541-544
    • /
    • 2012
  • In technology advances, The field of military and security surveillance system for a wide range of interest is required. Surveillance system offers a variety of services by the software that work with a remote access server. This paper shows the results of the implementation using three platforms as Mjpg-streamer for server, Arduino-multiwii for control system, OpenNI and OpenCV for image processing.

  • PDF

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Development of AR.Drone's Controller for the Indoor Swarm Flight (실내 군집비행을 위한 AR.Drone의 제어기 개발)

  • Cho, Dong-Hyu;Moon, SungTae;Rew, DongYoung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.153-165
    • /
    • 2014
  • Multi-rotor UAVs are utilized in various fields because of the advantages such that a hovering capability such as helicopters, a simple structure and a relatively high thrust. Recently, AR.Drone manufactured by Parrot is easily operated by beginner due to its internal stabilization loop in the on-board computer and it can be easily applied on various researches for the multi-rotor UAVs by providing an SDK(Software Development Kit). Further this platform can be suitably used for application to swarm flight since it is low cost and relatively small. Therefore, in this paper, we introduce the development process of the controller for indoor swarm flight by using the AR.Drone.

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape (무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석)

  • Yun, Jae Hyun;Choi, Ha-Young;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.513-520
    • /
    • 2014
  • An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.