• Title/Summary/Keyword: 매질경계

Search Result 103, Processing Time 0.023 seconds

Experimental Investigation of Characteristics Change by Kerf-Fill Material between Arrayed Elements of a Piezoelectric Transducer (압전 배열 트랜스듀서의 진동 요소간 kerf 충진 매질에 따른 특성변화의 실험적 고찰)

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.215-220
    • /
    • 2008
  • The kerfs between arrayed piezoelectric elements in a medical ultrasonic transducer or a piezoelectric composite transducer are generally filled by polymeric materials. The boundary condition of the elements for lateral mode vibration is changed according to the kerf-filling materials, so that the resonance frequency for longitudinal mode of the transducer is also varied. In this study, to investigate the resonance frequency variation for an arrayed transducer experimentally, the piezoelectric vibration elements of $14mm{\times}0.22mm{\times}0.44mm$ were fabricated and those were linearly arrayed. And, the resonance frequencies were measured for three cases of kerf-filling condition, non-filling and two different kinds of epoxy filling. Conclusively, it is confirmed that the resonant frequency variation shows the similar tendency with the theoretical one for the longitudinal mode.

An Efficient Analysis of Unbounded Scattering Field Using Three Dimensional Boundary Element Method (3차원 경계요소법을 이용한 무경계 산란장의 효율적 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.3
    • /
    • pp.14-21
    • /
    • 1994
  • In this paper, a numerical method to be obtain the radar cross section(RCS) of three- dimensional bodies with arbitrary geometry and material compositions on the electromagnetic field with arbitrary incident angle is described. The RCS is obtained by solving the individual surface integral equation about multilayers scatterer using the three-dimensional bonudary element method(BEM). To show propriety and usefulness as to the three-dimensional BEM in this paper, the choice of a geometry is a multi-regular hexahedron and multi-right-angled hexahedron out of oblique incident electric field, and is considered to apply to every condition with loss sufficiently.

  • PDF

Optical Waveguide Analysis by using the FDTD Method (FDTD법을 이용한 광도파로 해석)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.59-60
    • /
    • 2013
  • In order to analyze optical waveguide, the FDTD method can be applied. But structure of optical waveguide is relatively larger than wavelength of center frequency. But optical waveguide system must be periodic structure and the solution of the waveguide can be obtained from a simulation in one period of the structure by applying PBC(Periodic boundary condition). In this paper, an efficient FDTD algorithm incorporating PBC in inhomogeneous medium is introduced and estimated.

  • PDF

A New Method for Characterization of Composites by Ultrasonics (초음파를 이용한 복합재료 기계적 특성값의 새로운 특정 방법)

  • 장필성;전홍재
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • A new ultrasonic test method is proposed to obtain elastic constants of unidirectional composite materials nondestructively. In the proposed test method, only longitudinal transducers are used to measure wave velocities by through-transmission method. An aluminum wedge and a flat aluminum rectangular block are placed on each side of the test specimen. Oblique incident longitudinal wave is transmitted from a wedge to the specimen and the mode conversions are occurred sequentially at two interfaces between the specimen and aluminium. Measuring wave velocities converted to longitudinal waves in the rectangular block give all information to determine elastic constants of the composites. In order to determine shear stiffness coefficients, transverse wave velocity is measured indirectly from received longitudinal wave. Effects of anisotropy on waves are also considered in this study.

  • PDF

Image Reconstruction of Dielectric Pipes by using Levenberg-Marquardt and Genetic Algorithm (Levenberg-Marquardt 알고리즘과 유전 알고리즘을 이용한 유전체 파이프의 영상재구성)

  • 김정석;나정웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.803-808
    • /
    • 2003
  • Several dielectric pipes buried in the lossy half space are reconstructed from the scattered fields measured along the interface between the air and the lossy ground. Iterative inversion method by using the hybrid optimization algorithm combining the genetic and the Levenberg-Marquardt algorithm enables us to find the positions, the sizes, and the medium parameters such as the permittivities and the conductivities of the buried pipes as well as those of the background lossy half space even when the dielectric pipes are close together. Illposedness of the inversion caused by the errors in the measured scattered fields are regularized by filtering the evanescent modes of the scattered fields out.

Elimination of the Fabry-Perot effect in a $4{\times}4$ matrix method ($4{\times}4$ 행렬 연사에서 Fabry-Perot 간섭효과의 제거방법)

  • 우성일;백흠일;박구현;박세민;이기동;윤태훈;김재창
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.1
    • /
    • pp.5-8
    • /
    • 1998
  • In calculating the light propagation in inhomogeneous uniaxial materials by using a conventional $4{\times}4$ matrix method, Fabry-Perot effect is caused by inherent multiple internal reflections at interfaces for monochromatic light source. In this paper we propose an apodization method by which we can eliminate in negligible time the interference fringe in the $4{\times}4$ matrix optics. For a cell with k abrupt interfaces, the new apodization method can be implemented simply by, at maximum, (k+1) addtional $4{\times}4$ matrix multiplications in calculating the complete transfer matrix of the cell.

  • PDF

On the Thermal Boundary Conditions at the Interface Between the Porous Medium and the Impermeable Wall (다공성 매질과 비투과성 벽면 사이의 경계면에 대한 열적 경계 조건)

  • Kim, Deok-Jong;Kim, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1635-1643
    • /
    • 2000
  • The present work investigates a heat transfer phenomenon at the interface between a porous medium and an impermeable wall. In an effort to appropriately describe the heat transfer phenomenon at the interface, the heat transfer at the interface between the microchannel heat sink, which is an ideally organized porous medium, and the finite-thickness substrate is examined. From the examination, it is clarified that the he heat flux distribution at the interface is not uniform for the impermeable wall with finite thickness. On the other hand, the first approach, based on the energy balance for the representative elementary volume in the porous medium, is physically reason able. When the first approach is applied to the thermal boundary condition, and additional boundary condition based on the local thermal equilibrium assumption at the interface is used. This additional boundary condition is applicable except for the very th in impermeable wall. Hence, for practical situations, the first approach in combination with the local thermal equilibrium assumption at the interface is suggested as an appropriate thermal boundary condition. In order to confirm our suggestion, convective flows both in a microchannel heat sink and in a sintered porous channel subject to a constant heat flux condition are analyzed. The analytically obtained thermal resistance of the microchannel heat sink and the numerically obtained overall Nusselt number for the sintered porous channel are shown to be in close agreement with available experimental results when our suggestion for the thermal boundary conditions is applied.

The computation of the torso surface potentials using the boundary element method (경계요소법을 이용한 트로소 표면전위의 계산)

  • 이경중;이세진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.22-29
    • /
    • 1996
  • This study describes a method to find the torso surface potential based on the boundary element method. In order to find the torso surface potential, the governing equation was developed based on the green's second theorem. The boundary element method (BEM) which has a good computing capability in case of homogeneous and isotropic medium was applied to solve the equation. to validate the BEM, we considered a homogeneous sphere model which has an electrric dopole source inside. The results showed the good agreement between the analytic solution and the computed solution. In normal heart, the simulated torso surface isopotential maps are good agreement with that obtained form the ventricular excitation.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

Development of Measuring Method for Bridge Scour and Water Level Using Temperature Difference Between Medium Interfaces (매질 경계면의 온도 변화를 이용한 교량 세굴 및 수위 측정방법 개발)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.126-133
    • /
    • 2014
  • The main source of bridge destruction is due to scour. The bridge scour is the result of erosive action of flowing water taking away ground materials from near the abutment or pier. Furthermore, the water level must be also monitored whiling flooding, because it dangers not only the stability of bridge itself, but the safety of bridge users. This study is intended to develop a new measuring system for bridge scour by overcoming the current limitation of scour measurement technique. This measuring system is confirmed its excellence and validity through this study. The newly developed measuring system finds the distance between the water surface and the ground surface by detecting temperature difference along the abutment vertically. The measuring mechanism for monitoring the bridge scour and water level is based on identifying the temperature difference among mediums, including air, water and ground. In order to validate the new measuring system, the lab experiments and the field tests are conducted and compared. It has been confirmed that this system can effectively measure the bridge scour and the water level by analyzing the temperature distribution between mediums and the temperature variation over time.