• Title/Summary/Keyword: 매설 배관

Search Result 214, Processing Time 0.025 seconds

Experimental and Numerical Analysis on Vibration Behavior of Underground Three-layered Pipeline subjected to Dump Truck Loads (덤프트럭 재하 조건에 따른 지중 삼중관의 실험 및 수치해석적 진동 거동 분석)

  • Cho, Seok-Ho;Won, Jong-Hwa;Kim, Jeong-Jae;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Pipes buried in around a construction site of urbanized area tend to be affected by the vibration caused by construction loads. The behaviors of buried pipes affected by periodic vibration were analyzed through numerical analyses based on existing study and experimental results. From the results of theses analyses, the serviceability of buried pipes subjected to vibration was verified. This study analyzed the pipe behaviors subjected to dump truck loads with respect to burial depths, and this research was performed as foundation study to establish standards for managing buried pipes. The analyses were performed with burial depth of 0.6, 1.2, 1.8m and vehicle velocity of 10km/h. From theses analyses, the vibration velocity and occurred stress tend to decrease as a burial depth increases.

Analysis of Stray Current Interference between Underground Pipelines and DC Electric Railways (매설배관과 직류전기철도의 표유전류 간섭분석)

  • Ha Y.C.;Bae J.H.;Ha T.H.;Lee H.G.;Kim D.E.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.41-47
    • /
    • 2006
  • When an underground pipeline runs parallel with DC electric railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns, i.e., the rails. Perforation due to the electrolytic corrosion may bring about large-scale accidents even under cathodically protected condition. Traditionally, drainage bonding methods have been widely used as a mitigation method for stray current interference. In particular, the increased adoption of forced drainage method to gas pipelines makes the interference much more sophisticated. In this paper, we analyze the electric interference between pipelines and railways from the results of field investigation carried out in Seoul and Busan.

  • PDF

Incidents Study in Pipelines (외국 배관손상 사례분석)

  • 김우식;김철만;홍성호
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.185-191
    • /
    • 1997
  • 현재 우리나라에는 상당량의 천연가스 배관 및 송유관이 지하에 매설되어 있고 그 길이는 매년 큰 폭으로 증가하고 있다. 이러한 배관은 배관건설공사 및 공사후 유지, 보수 관리시 배관의 파괴와 관련된 여러가지 상황이 존재할 수 있다. 즉 외부에서 작용하는 다양한 요인이나 배관 내부요인에 의해 배관이 완전한 파단까지는 이르지 않더라도 손상을 받는 경우가 생긴다. 배관에 손상이 발생하였을 때 그 원인을 규명하고 처리방안을 마련하는 작업이 필요하다. 이러한 것들을 사전에 미리 예방하고 손상해석을 올바르게 하는데 필요한 것이 배관손상사례에 대한 데이터베이스이다.

  • PDF

The Development of sub-event Information interface for Integrated management of underground pipelines (통합 서비스를 위한 지하매설관 하부 이벤트 정보전달 인터페이스 개발)

  • Chae, Sookwon;Seo, Jaesoon;Kim, Joonseok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.26-34
    • /
    • 2017
  • In this study, for the integrated information management of underground pipelines, each information management server software must have it's inter-operability. So Many kinds of smart-city integrated platform softwares were surveyed and the best platform software was selected. The interface software modules developed in this study was installed at the test system. Through this test system, when a sub system transfers an event message to the upper integrated server system, the inter-operability test between the upper system and a sub operating system was performed and its operability was resolved.

A Study on the Compressible Fluid Leak Position Detection of Buried Pipelines (매설배관 내의 압축성 유체 누설 위치 검출에 관한 연구)

  • Lee, Jeong-Han;Kim, Hyung-Jin;Yoon, Doo-Byung;Park, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.40-49
    • /
    • 2016
  • When a leak occurs in the buried pipelines, The leak locations are able to detected by using the vibration sensors. These leak detection system, intended for incompressible fluid, such as water, are of using the wave propagation velocity and a signal arrival time delay between the sensors. In this paper, to develop a leak location detection system for a compressible fluid such as gas, the conventional detection methods have been studied, improved, and verified through the experiment using the compressed air. It confirmed that it is possible to detect the leak location for compressible fluid in the buried pipelines and to be applicable to the development of a leak location detection system in buried pipelines for gas.

Development of a Robot System for Repairing a Underground Pipe (지하매설 배관의 보수를 위한 로봇시스템 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1270-1274
    • /
    • 2012
  • The pipe laid underground more than three decades ago are already starting to reveal the problem like corrosion. There have been many studies to design robotic system for a cost-effective revival of old pipes. And the ability to inspect in the pipes, the ability to treat and repaint the pipes and the fault-tolerant robotic system are well known important factors for the robotic system. It's real hard part to manage the underground pipes for companies because it needs high technical and too much money. According to this reasons, in this paper, we had design an in-pipe robotic system having abilities to inspect outworn pipes, to treat and paint old pipes. This new robot system is pressing wall type robot, and it has a good carrying power for working.

Consequence Analysis for Release Scenario of Buried High Pressure Natural Gas Pipeline (지하매설 도시가스배관의 누출시나리오에 따른 사고피해영향분석)

  • Kim, Jin Hyung;Ko, Byung Seok;Yang, Jae Mo;Ko, Sang-Wook;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2014
  • Buried natural gas pipelines in densely populated urban areas have serious hazards of property damages and casualties generated by release, dispersion, fire and explosion of gas caused by outside or inside failures. So as to prevent any accident in advance, managers implement danger management based on quantitative risk analysis. In order to evaluate quantitative risk about buried natural gas pipelines, we need calculation for radiant heat and pressure wave caused by calculation for release rate of chemical material, dispersion analysis, fire or explosion modeling through consequence analysis in priority, in this paper, we carry out calculation for release rate of pressured natural gas, radiant heat of fireball based in accident scenario of actual "San Bruno" buried high pressured pipelines through models which CCPS, TNO provide and compare with an actual damage result.

Stress Distribution of Buried Gas Transportation Pipeline According to Vehicle Load Velocity (지중 가스 수송 강관의 차량 이동 속도에 따른 응력 분포 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Yoo, Han-Kyu; Kim, Mi-Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • In order to estimate the integrity and identify the dynamic characteristics of buried gas pipelines subjected to vehicle loads, FE analysis is performed based on the 'Highway and Local Road Design Criteria' and the 'KOGAS Guideline for Pipeline Management'. The FE model describes the current burial condition of Korea properly, and the DB-24 load model is adopted for this research. This study considers a varying velocity in the range of $40{\sim}160\;km/h$ and $P_i=8$ MPa(internal pressure) with depth cover, Z=1.5 m. Maximum stress occurs at v=80 km/h and decreases after v=80 km/h. The maximum induced stress by DB-24 loads is about 10 MPa. Under the design pressure, however, the analysis results show that API 5L Gr. X65 pipelines have sufficient integrity to withstand the vibration of vehicle loads.

  • PDF