DOI QR코드

DOI QR Code

A Study on the Compressible Fluid Leak Position Detection of Buried Pipelines

매설배관 내의 압축성 유체 누설 위치 검출에 관한 연구

  • Received : 2016.08.01
  • Accepted : 2016.10.04
  • Published : 2016.10.31

Abstract

When a leak occurs in the buried pipelines, The leak locations are able to detected by using the vibration sensors. These leak detection system, intended for incompressible fluid, such as water, are of using the wave propagation velocity and a signal arrival time delay between the sensors. In this paper, to develop a leak location detection system for a compressible fluid such as gas, the conventional detection methods have been studied, improved, and verified through the experiment using the compressed air. It confirmed that it is possible to detect the leak location for compressible fluid in the buried pipelines and to be applicable to the development of a leak location detection system in buried pipelines for gas.

지하 매설배관을 이용한 유체 수송 중 임의의 배관 위치에서 누설이 발생할 경우 육안 식별의 어려움으로 진동 센서 등을 이용하여 누설 위치를 탐지한다. 이러한 누설 위치 검출 시스템은 물과 같은 비 압축성 유체를 대상으로 센서 간의 신호 도달 시간차와 음파의 전파속도를 이용하여 검출하고 있다. 본 논문에서는 가스와 같은 압축성 유체의 누설 검출을 위한 시스템을 개발하고자 기존 검출 방법을 검토하고, 온도와 압력을 고려한 압축성 유체의 전파속도 식을 개선하고 압축 공기를 이용한 실험 장치를 구축하여 실험 수행을 통해 검증하였다. 검증 결과 매설배관 내 압축성 유체의 누설 위치 검출이 가능함을 확인하였으며, 가스 수송용 매설배관 내 누설 위치 검출 시스템 개발에 적용 가능함을 확인하였다.

Keywords

References

  1. Knapp, C. H., and Carter, G. C., "The generalized correlation method for the estimation of time-delay", IEEE Trans. Acoust., Speech, Signal Processing, 24(4), 320-327, (1976) https://doi.org/10.1109/TASSP.1976.1162830
  2. Liston, D. A., et al., "Leak Detection Techniques", Journal of New England Water Works Association, 1206(2), 103-108, (1992)
  3. Gao, Y., Brennan, M. J., Joseph, P. F., "A Comparison of Time Delay Estimators for the Detection of Leak Noise Signals in Plastic Water Distribution Pipes", Journal of Sound and Vibration, 292, 552-570, (2006) https://doi.org/10.1016/j.jsv.2005.08.014
  4. Lin, T. C., and Morgan, G. W., "Wave Propagation through Fluid Contained in a Cylindrical, Elastic Shell", Journal of Acoustical Society of America, 28(6), 1165-1176, (1956) https://doi.org/10.1121/1.1908583
  5. Fuller, C. R., and Fahy, F. J., "Characteristics of Wave Propagation and Energy Distributions in Cylindrical Elastic Shells Filled with Fluid", Journal of Sound and Vibration, 81(4), 501-518, (1982) https://doi.org/10.1016/0022-460X(82)90293-0
  6. Muggleton, J. M., Brenan, M. J., and Pinnington, R. J., "Wavenumber Prediction of Waves in Buried Pipes for Water Leak Detection", Journal of Sound and Vibration, 249(5), 939-954, (2002) https://doi.org/10.1006/jsvi.2001.3881
  7. Fahy, F. J., Sound and Structural Vibration-Radiation, Transmission and Response, Academic Press, London, (1985)
  8. Lee, Y. S., Yoon, D.J., and Jeong, J.-C., "Leak Location Detection of Underground Water Pipes Using Acoustic Emission and Acceleration Signals," Journal of the Korean Society for Nondestructive Testing, 23(3), 89-98, (2003)
  9. Lee, Y. S., "Leak Point Detection of Underground Water Pipelines", Journal of the Korean Society for Noise and Vibration Engineering, 17(1), 16-21, (2007)
  10. Yoon, D. B., Park, J. H., and Shin, S. H., "Improvement of Cross-corelation Technique for Leak Detection of a Buried Pipe in a Tonal Noisy Environment", Nuclear Engineering and Technology, 44(8), 977-984, (2012) https://doi.org/10.5516/NET.09.2011.067
  11. Lee, Y. S., "Analysis on Signal Properties due to Concurrent Leaks at Two Points in Water Supply Pipelines", Journal of the Korean Society for Nondestructive Testing, 35(1), 31-38, (2015) https://doi.org/10.7779/JKSNT.2015.35.1.31
  12. Bendat, J. S., Piersol, A. G., Random Data: Analysis and Measurement Procedures, 3rd ed., John Wiley & Sons, Inc., New York, 118-130, (2000)
  13. Yoon, D. B., Park, J. H,, et al., "A Study on Method for Removing Reflected Wave to Enhance the Leak Detection Capability of a Buried Pipe", Proceedings of the KSNVE Annual Autumn Conference, 209-210, (2012)