• Title/Summary/Keyword: 매립용량

Search Result 35, Processing Time 0.024 seconds

Adsorption of the Siloxane Contained in Landfill Gas using Clay Mineral (점토광물을 이용한 매립지 가스중 실록산 흡착에 관한 연구)

  • Kim, Jong Kuk;Choi, Ho Seok;Yoo, In Sang
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.465-470
    • /
    • 2006
  • Siloxanes are widely used in industrial processes and consumer products. When landfill gas is used as fuel for gas engines, volatile siloxane in landfill gas causes serious damage to gas engines and pretreatment facilities. In this study, the applicability of various clay minerals was evaluated as the alternative adsorbents of activated carbon. SEM and BET analyses of illite, vermiculite, and activated carbon were performed for comparing those physical properties. Siloxane adsorption capacities of illite and vermiculite were estimated very high to 1.7 g/g illite, 3.8 g/g vermiculite respectively through the adsorption experiments of D5 siloxane.

Information Management System of Solid Waste Landfill based on 3 Dimensional Method (3차원기법을 이용한 폐기물매립지 정보관리시스템 구축 연구)

  • Park, Jin-Kyu;Cho, Sung-Youn;Kim, Byung-Tae;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.39-48
    • /
    • 2016
  • An information management system for a solid waste landfill site was developed, in this study, to optimize the operation and management of solid waste landfill in real time in addition to provide the information of landfill status to the landfill operator, public official concerned and local residents. The landfill information management system is composed of two systems (Solid waste landfill history management system and landfill operation and performance management system). The solid waste landfill history management system based on automated RFID/LPR system allows landfill operators to provide information of waste collection vehicles and received waste. In addition, the system aids in the identification of 3-dimensional (3D) position for landfilled solid wastes. Using the landfill operation and performance management system based on 3D laser scanner delivers information about landfill volume, settlement, landfill density, and current landfill capacity to landfill operators in real time, resulting in optimum space utilization. Ultimately, this system would dramatically reduce exposure of landfill operators to hazardous materials and improve the productivity of landfill operations.

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

Estimation of Maximum Volume in Landfill Site Using Airborne LiDAR Measurement (항공LiDAR 자료를 이용한 생활폐기물매립장의 가용한도 추정)

  • Byun, Sang-Chul;Choi, Myung-Kyu;Kim, Jin-Kwang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.547-554
    • /
    • 2010
  • This study intends to analyze how long the landfill site will be available by estimating maximum volume of landfill. Preestimated volume was calculated using digital maps and scheme drawings. The latest reclamation volume was measured using the state-of-the-art airborne LiDAR technology. Based on these data. landfill volume of now, carries in volume of past a few years and subsidence rate were calculated. As a result of study, the remaining capacity of this landfill site was estimated that it would be available till 2045.

Application of Genetic Algorithm for Designing Tapered Landfill Lining System Subjected to Equipment Loadings (장비하중을 받는 매립지 사면 차수 시스템 설계를 위한 유전자 알고리즘의 적용)

  • 박현일;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, a new optimized design methodology is proposed. It integrates the discrete element method (DEM) and real-coded genetic algorithm for the design of landfill lining system subjected to equipment loadings. In applying the design method to a tapered lining system, the effect of the taperness, which means the change of shape for cover soil, is examined. The optimization problem to maximize the capacity of a waste-containment facility is solved using real coded genetic algorithm. Numerical example analysis is carried out for a typical landfill slope structure.

A Case Study on the Estimation of the Resource Recovery Potentials by Landfill Mining (매립지 정비에 의한 순환이용 가능량 산정 사례 연구)

  • Yi, Sora;Lee, Woo Jin;Rhee, YoungJoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.5-12
    • /
    • 2018
  • As many local governments have faced increasing conflicts on landfill use and the time of end use, it is difficult to provide an alternative landfill or conclude a consensus of lifespan extension for the existing landfill site. Therefore, the purpose of this study is to contribute improving of the landfill capacity by calculating the resource recovery potentials of landfilled waste previously and in the future by landfill mining. For this, rate of volume increase, weight ratio, and apparent density were adopted as major parameters and their values were calculated through previous cases. The rate of volume increase was calculated to 1.42 by averaging previous cases of three areas. The average weight ratio of soil matter was 45.6% by calculating for the three areas. For the combustible waste and incombustible waste, statistical data can be used. The apparent densities were divided by combustible waste, incombustible waste, and soil matter using an average of two areas value, i.e., $0.35ton/m^3$, $1.40ton/m^3$ and $1.58ton/m^3$. We analyzed the resource recovery potential of Cheongju landfill by using the estimated parameters. The additional landfill capacity was 45% of the existing landfill capacity by recovering landfilled waste by landfill mining. In addition, it is analyzed that the lifespan is extended to 20 years, if the combustible waste of new inputting waste is sorted and combusted for energy recovery and incineration ash, incombustible waste, and soil matter are only reclaimed into the existing Cheongju landfill. It is expected that the methodology and parameters of this study will be used as basic data when resource recovery potential is analyzed for another case study of landfill mining.

Development of process for energy recovery from landfill gas using LFG-Hydrate (LFG-Hydrate를 통한 매립가스 에너지화 공정 개발)

  • Moon, Donghyun;Shin, Hyungjoon;Han, Kyuwon;Lee, Jaejung;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.152.2-152.2
    • /
    • 2010
  • LFG는 매립된 폐기물 중 유기성분이 혐기성조건에서 미생물에 의해 분해가 되면서 발생하며, 이러한 매립지가스는 주변 지역의 자연 및 생활환경에 악영향을 미치기 때문에 소각 등의 방법으로 LFG를 처리하고 있다. 일반적으로 매립지로부터 발생하는 가스의 량은 폐기물 1톤 당 $150{\sim}250m^3$로서 매립 후 2~3년 후에 최대량이 발생하며 매립 후 20~30년 후까지 지속적으로 발생함으로 안정적인 LFG의 공급이 가능하며, 메탄함량이 50%인 경우 약 $5,000kcal/m^3$의 높은 발열량을 가지므로 대체에너지원으로 이용할 경우 환경적인 문제 해결 및 신재생에너지원으로 활용할 수 있다. LFG 자원화 할 경우 가장 안정적인 방안으로 발전 및 중질가스로 활용하는 것이나, 발전의 경우 최소 200만톤 이상의 매립용량을 갖추어야 경제적인 사업성을 확보할 수 있으며, 중질가스로 활용하는 경우 인근에 가스 수요처를 확보해야 하는 어려움이 있다. 만약 중 소규모의 매립장에서 발생하는 LFG를 안전하고 경제적인 조건으로 저장 및 수송할 수 있다면 중 소규모의 매립지에서 발생하는 LFG도 활용할 수 있을 것으로 기대되며, 안전하고 경제적인 저장과 수송기술을 통하여 발전이 아닌 중질가스로의 활용도 가능하게 될 것이다. 또한 여러 곳의 매립장에서 발생한 LFG를 한 곳으로 집중시켜 고질가스로 전환하는 설비비용을 절감할 수 있으며, 정제된 고질가스를 이용하여 발전보다 경제적인 자동차 연료나 도시가스로 활용할 수 있을 것이다. 본 연구에서는 LFG의 저장과 수송기술 중 GTS 기술을 통하여 저장과 수송에 제약이 크고 많은 비용이 소비되는 기체 상태의 에너지원을 하이드레이트화 시킴으로서 중 소규모 매립지에서 상대적으로 적은 비용으로 가스저장과 지상수송이 가능하게 할 수 있다. 본 연구의 결과로 LFG 에너지화 실증화 플랜트를 설계/제작 하였으며, 메탄+이산화탄소+물 하이드레이트 형성 실험 결과 4.56 Mpa, 277.2 K 조건에서 3시간을 한 사이클로 하는 공정운전을 가지는 것을 확인하였다. 이때 생성된 슬러리상의 하이드레이트를 고압으로 배출하여 펠릿으로 형성시켰으며, 형성된 하이드레이트 펠릿의 경우 92.27%의 메탄을 포함하는 것을 확인하였다.

  • PDF

Volume Calculation for Filling Up of Rubbish Using Stereo Camera and Uniform Mesh (스테레오 카메라와 균일 매시를 이용한 매립지의 환경감시를 위한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we developed the algorithm which computes the waste volume using the stereo camera for enhancing the environment of waste repository. Using the stereo vision camera, we first computed the distortion parameters of stereo camera and then we obtained the points cloud of the object surface by measuring the target object. Regarding the points cloud as the input of the volume calculation algorithm, we obtained the waste volume of the target object. For this purpose, we suggested two volume calculation algorithm based on the uniform meshing method. The difference between the measured volume such as today's one and yesterday's one gives the reposit of waste volume. Using this approach, we can get the change of the waste volume repository by reading the volume reports weekly, monthly and yearly, so we can get quantitative statistics report of waste volume.

An Experimental Study on Consolidation Effect of Dredged and Reclaimed Ground with PBD using Seepage Pressure (침투압을 이용한 PBD 타입 준설매립 지반의 압밀 효과에 관한 실험적 연구)

  • Lee, Moo-Chul;Park, Min-Chul;Kim, Ju-Hyun;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.13-24
    • /
    • 2012
  • In this study, the in-situ model test has been conducted and used to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analogize the relation among effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test result. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar with those of self-weight consolidation of the centrifugal model test. But, it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Greenhouse Gas Reduction Effect of Improvement of Existing Landfill Gas(LFG) Production by Using Food Waste Water (음폐수 이용 기존 매립지 가스 발생 향상에 따른 온실가스 감축효과)

  • Shin, Kyounga;Dong, Jongin;Park, Daewon;Kim, Jaehyung;Chang, Wonsoek
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.104-113
    • /
    • 2016
  • This study analyzes correlation between methane gas production and injection of food waste water to motivate to expand renewable energy as a way of GHG (Green House Gas) mitigation to achieve the national GHG target proposed for the climate agreement in Paris last year. Pretreatment of food waste water was processed with pH 6 at $35^{\circ}C$ and used the fixed-bed upflow type reactor with the porous media. As a result of operation of pilot-scaled bioreactor with food waste water, the methane gas production was 6 times higher than the methane gas production of control group with rain water. The average production of methane was $56{\ell}/day/m^3$ which is possible to produce $20m^3$ of methane in $1m^3$ of landfill. As a way of energy source, when it is applied to the landfill over $250,000m^3$, it is also able to achieve financial feasibility along with GHG reduction effect. GHG reductions of $250,000m^3$ scale landfill were assessed by registered CDM project and the annual amount of reductions was 40,000~50,000 $tCO_2e$.