• Title/Summary/Keyword: 매립석탄회

Search Result 68, Processing Time 0.024 seconds

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.

A Geochemical Study on the Enrichment of Trace Elements in the Saline Ash Pond of a Bituminous-burning Power Plant in Korea (국내 모 유연탄 발전소의 석탄회 매립 염호수 내 미량원소 농집에 대한 지구화학적 연구)

  • Kim, Seok-Hwi;Choi, Seung-Hyun;Jeong, Gi Young;Lee, Jae-Cheol;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In present study, we geochemically investigated the fresh coal ashes and the saline ash pond of an electric power plant in Korea, which burns imported bituminous coals. The goals are to see the chemical changes of the ash pond by reaction with coal ashes and to investigate the relative leachability of elements from the ashes by reaction with saline waters. For this study, one fresh fly ash, one fresh bottom ash, and 7 water samples were collected. All the ash samples and 2 water samples were analyzed for 55 elements. The results indicated that the fly ashes are enriched with chalcophilic elements such as Cu, Zn, Ga, Ge, Se, Cd, Sb, Au, Pb, and B relative to other elements. On the other hand, concentrations of As, Ba, Co, Ga, Li, Mn, Mo, Sb, U, V, W, and Zr are much higher in the ash pond than those dissolved in the seawater. Ag, Bi, Li, Mo, Rb, Sb, Sc, Se, Sn, Sr, and W show high ratios of elemental concentrations in pond water to those in the fly ash. Our results imply that the leaching of trace elements is regulated by geochemical controls such as solubility and adsorption even though the trace elements are relatively enriched on the ash surfaces after the coal combustion due to their volatilities.

Evaluation on Field Application of Controlled Low-Strength Materials Made of Coal Ash in Reclamation Site (석탄회를 활용한 저강도고유동화재의 공유수면매립현장에 대한 적용성 평가)

  • Kong, Jin-Young;Jung, Hyuk-Sang;Cho, Sam-Deok;Kim, Ju-Hyong;Hyun, Jae-Hyuk;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.27-39
    • /
    • 2012
  • This paper presented the strength and environmental characteristics of reclaimed-ground filled with controlled low-strength materials (CLSM) made of coal ash, small amounts of cement, and water in a reclamation site and evaluated the possibility of the use of coal ash on reclamation materials for beneficial use. Three-month period of SPT, CPT, environmental effects evaluation etc. were conducted. N values and cone resistances in ground filled with CLSM were greater than or similar to those in dredging sand. In case of land filled with coal ash except cement these values were lower than those in dredging sand. The results of soil and seawater pollution were lower than test criteria without high pH. Also the values of PH test were measured between pH 5.0~9.0, the criteria of industrial water in the Law for the Underground Water of Korea.

Fundamental Study on the properties of concrete incoporating pond-ash as fine aggregate (잔골재로서 매립회를 혼입한 콘크리트의 특성에 관한 기초 연구)

  • Lee, Bong-Chun;Chae, Sung-Tae;Woo, Young-Je;Kim, Jin-Sung;Kim, Joo-Hyung;Ryu, Hwa-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.477-480
    • /
    • 2008
  • With an increase of power consumption due to industrial development, the generation of coal ash has been growing tremendously and, accordingly, environmental concern over its disposal and insufficiency in disposal sites have been raised as other issues to be considered. In order to examine the usability of coal ash as an aggregate for concrete, such fundamental information as slump, air contents, mechanical properties and durability of concrete has been secured by way of setting 10, 20 or 30 wt. % of fine aggregate alternative rate of ash and identifying its basic properties at each pond-ash contents. The results of the study indicate that slump and air content heavily depend on the site of generation, and this might greatly influence on the content of fine particles of the ash. It is also shown that its freezing and thawing resistance tends to be relatively lower than that of Plain, which requires comprehensive examination over next few years on the absorptiveness and properties of mixed water of the ash collected from each disposal site.

  • PDF

A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment (당진화력발전소의 석탄회 연안매립과 중금속 원소의 용출에 대한 생지화학적 연구)

  • Cho, Kyu-Seong;Roh, Yul;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.112-122
    • /
    • 2007
  • It is known that coal-derived fly ashes have the unique chemical composition and mineralogical characteristics. Since iron oxides in coal fly ash are enriched with heavy metals, the subsurface media including soils, underground water, and sea water are highly likely contaminated with heavy metals when the heavy metals are leached from fly ashes by water-fly ash interactions. The purpose of this study was to investigate how indigenous bacteria affect heavy metal leaching and mineralogy in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Dangjin seashore, Korea. The average pH of ash pond seawater was 8.97 in nature. Geochemical data showed that microbial activity sharply increased after the 7th day of the 60-day course batch experiments. Compared with other samples including autoclaved and natural samples, ${SO_4}^{2-}$ was likely to decrease considerably in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data including Eh/pH, alkalinity, and major and trace elements showed that the bacteria not only immobilize metals from the ash pond by facilitating the chemical reaction with Mn, Fe, and Zn but may also be able to play an important role in sequestration of carbon dioxide by carbonate mineral precipitation.

Flow and Strength Characteristics of the Lightweight Foamed CLSM(Controlled Low-Strength Materials) with Coal Ash (석탄회를 활용한 경량기포유동화재의 플로우 및 강도 특성)

  • Lee, Seungjun;Lee, Jonghwi;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.73-82
    • /
    • 2011
  • Coal ash of industial by-products was not recycled about 30% in total emissions. Moreover, it caused environmental pollution as well as wasted unnecessary expenses and time. Currently, fly ash(FA) is recycled as construction material however ponded ash(PA) is mostly buried. Lightweight foamed Controlled Low-Strength Materials(CLSM) evaluated in this study reduces unit weight by mixing foam in the traditional Controlled Low-Strength Material and has lightweight and flowability to be available for backfill materials in construction. Flow test, unconfined compressive strength test, and foamed-slurry unit weight test were performed in this study and the applicability of lightweight foamed CLSM for construction materials was evaluated. The results indicate that the mixture ratio(PA:FA) ranging from 70:30 to 50:50, cement of 7%, foam of 2~3%, and water content of 26.5~29.5% were required to satisfy the following standards such as flow value(i.e., 20cm), unconfined compressive strength(i.e., 0.8~1.2MPa), and foamed-slurry unit weight(i.e., $12{\sim}15kN/m^3$).

Development of Production System and Properties of Ceramic Binder using Aluminosilicate Raw Material (세라믹 바인더 제조공정의 알루미노실리케이트계 원료 적용 시스템 및 세라믹 바인더 물성개발)

  • Park, Cheol;Joe, Sung Hyung;Kim, Kyung Su;Lim, Chae Yong
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.25-26
    • /
    • 2022
  • Coal ash generated from thermal power plants has been used as alternative raw material for cement production. But when using buried coal ash, careful attention is needed because it contains some amount of moisture and chlorides which can cause problems in production process. In this project, cement production process and quality control technology for using buried coal ash as cement raw material has been being developed.

  • PDF

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

A Study on the Utilization of Coal Ash as Earthwork Materials (석탄회의 토공재로서의 활용에 관한 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 1996
  • In this study, the possibility of the utilization of coal ash as earthwork materials is investigated. For this purpose, some laboratory experiments were carried out. The samples used in these tests are fly ash(FA), bottom ash(BA), coal ash dropped into ash pond(FA:BA=8:2), and mixed coal ash(FA:BA=5:5), which were discharged as a by-product at Yong-Yeul thermoelectric power plant, and general road filling materials. And for the deformation analysis of coal ash reclamation ground, several hyperbolic model parameters were determined by triaxial compression test. As a result of this study, coal ash has excellent engineering properties such as strength parameters comparing with general soils of the same grain size, especially in case of being used as backfill materials and reclamation materials on soft ground, and coal ash is superior to general earthwork materials in engineering properties becasuse of self hardening behaveiour, light weight property, etc.

  • PDF

Evaluation on Feasibility of Industrial By-products for Development of Mono-Layer Landfill Cover System (산업부산물을 이용한 단층형 매립지 복토시스템 개발을 위한 적용 타당성 평가)

  • Kim, Soon-Oh;Kim, Pil-Joo;Yu, Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1075-1086
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to apply mono-layer cover system for non-sanitary landfill sites, 6 different industrial by-products, such as construction waste, bottom ash, gypsum, blast furnace and steel manufacture slags, and stone powder sludge, were evaluated. Various physicochemical and hydrodynamic properties of the industrial byproducts were investigated. The environmental safety was monitored using batch and long-term leaching tests as well. In addition, the flexibility of plants was observed by cultivating them in the industrial by-products. The results for physicochemical properties indicate that most of the materials considered appeared to be suitable for landfill cover. Particularly, the concentration levels of hazardous elements regulated by the Korean Law for Waste Management did not exceed the regulatory limits in all target materials. In addition, the concentrations of regulated elements for the Korean Soil Conservation Law were examined below the regulatory limits in most of materials considered, except for the stone powder sludge. The results of batch and long-term experiments showed bottom ash and construction waste were the most suitable materials for landfill cover among the industrial by-products considered. The results of plant studies indicate that the bottom ash among industrial by-products considered was most effective in developing vegetation on landfill site, showing fast germination and large growth index. At the final covering system made of mixture of soil and bottom ash, the optimum application rate of farmyard manure was observed to be 40-50 Mg/ha.