대학도서관 맞춤교육은 이용자의 자발적인 요청으로 사서가 이용자의 요구사항과 주제 분야, 전공 등을 고려하여 맞춤형으로 교육을 설계 제공하는 것이다. 맞춤교육은 이용자가 필요한 시점에 필요한 내용을 제공한다는 강점을 가진다. 본 연구에서는 맞춤교육의 국내 대학도서관 운영현황을 파악하고, 맞춤교육의 필요조건 및 장애요인을 파악하고자 하는 목적으로 대학도서관의 맞춤교육담당자를 심층 면접하였다. 연구결과, 맞춤교육의 필요조건으로 사서 인력의 자격 및 자질과 교육 환경적 측면이 중요한 것으로 밝혀졌다. 한편 앞에서 파악된 필요조건이 결여되거나 교과운영과정에서 발생하는 문제점들이 주요 장애요인으로 파악되었다.
본 연구의 목적은 맞춤형 이용자교육을 시행하고 있는 국내 대학도서관의 맞춤형 이용자교육담당 사서들의 인식을 조사하는 것이다. 맞춤형 이용자교육을 제공해 본 경험이 있는 8명의 사서를 대상으로 일차적으로 심층면담하고, 그들의 응답과 문헌조사를 토대로 설문지를 개발하여 해당 교육을 제공해 본 전국 94개 대학도서관의 사서 94명을 대상으로 설문조사하였다. 연구결과, 응답자 대부분이 맞춤형 이용자교육에 대해 긍정적으로 인식하는 가운데, 교육 운영에서 교수진과의 협력을 가장 중요하다고 여기는 것으로 나타났다. 또 맞춤형 교육사서에게 필요한 것으로 석사학위나 주제지식보다 교육에 대한 의지나 봉사정신 등 태도적 측면을 더 중요한 것으로 인식하고 있었으며, 담당인력 부족을 교육 운영의 가장 큰 어려움으로 파악하고 있었다. 본 연구결과는 현장에서 맞춤형 이용자교육을 확대, 제공하는데 활용할 수 있을 것이다.
본 연구는 현재 다양한 형태로 시행되고 있는 국내 대학도서관 맞춤형 이용자 교육의 전반적인 운영 현황을 조사하고, 이를 토대로 해당 교육을 활성화하는데 필요요건과 장애요인을 파악하고자 하는 목적으로 실시되었다. 전국 4년제 대학 중앙도서관을 대상으로 전수조사하여 총 206개관의 웹사이트에서 맞춤형 교육의 전반적인 사항을 파악한 후, 설문지법을 통해 교육 운영 현황을 조사하였다. 연구결과, 설문에 응답한 총 149개관 가운데 94개관(63.1%)에서 맞춤형 교육을 운영하고 있었으며, 55개관(36.9%)에서는 해당 교육을 시행하지 않고 있었다. 국내 대학도서관 맞춤형 교육은 예산, 사서 수 등 도서관의 가용자원이 많을수록 더 활성화되어 있었으며, 사서의 자질 중에서는 학력, 전공 등과 같은 능력보다 봉사정신이 교육 운영 활성화에 더 영향력 있는 요소로 밝혀졌다. 본 연구결과는 대학도서관 실무자들에게 맞춤형 교육 운영과 서비스에 대한 기초정보를 제공하고, 향후 후속 연구의 토대가 되는 기반연구로 활용될 수 있을 것이다.
생성형 인공지능의 급속한 발전으로 이제 프로그래머의 도움 없이 누구나 개인 맞춤형 챗봇을 제작하고 이를 무료로 활용할 수 있는 시대가 열렸다. 본 연구는 예비 교사 교육을 목적으로, OpenAI의 GPTs 기반 맞춤형 챗봇을 개발하였다. 개발된 맞춤형 챗봇은 대규모 언어 모델(Large Language Model, LLM)을 토대로한 생성형 AI를 이용했기 때문에 그 응답 또한 확률적이므로, 맞춤형 챗봇의 개발 절차뿐만 아니라 그 응답이 적절한지에 대한 점검이 필요하다. 이를 위해 예비 교사를 지도하는 교수자들이 맞춤형 챗봇의 응답에 대한 타당성을 5점 척도로 분석하여 수학교육적 성능을 살펴보았다. 동일한 질문에 대한 범용적인 챗봇인 ChatGPT, 맞춤형 챗봇인 GPT, 그리고 초등수학교육 전문가의 응답을 교수자들이 분석한 결과, 초등수학교육 전문가의 응답은 평균 4.52점을, 맞춤형 챗봇인 GPT는 평균 3.73점을 받아 맞춤형 챗봇인 GPT의 응답은 초등수학교육 전문가의 수준에는 미치지 못하는 것으로 나타났다. 하지만 5점 척도에서 보통 이상으로 '적절하다'에 가까운 점수를 받아 맞춤형 챗봇인 GPT의 교육적 활용 가능성을 확인할 수 있었다. 한편, 범용적인 챗봇인 ChatGPT의 응답은 평균 2.86점으로 낮은 평가를 받았으며, 예비 교사를 지도하는 교수자들은 답변 내용이 체계적이지 않고 일반적인 수준에 머물러 있다고 평가하였다. 이에 범용적인 챗봇인 ChatGPT는 수학교육에 한정하여 사용하기에는 어려움이 있어 보인다. 기존의 맞춤형 챗봇이 교육적 효과를 입증했음에도 불구하고, 그 제작 과정에서 요구되는 시간과 비용이 큰 장애물로 작용해왔다. 그러나 이제 GPTs 서비스를 통해 누구나 손쉽게 교수자 및 학습자에게 적절한 맞춤형 챗봇을 제작할 수 있으며, 그 응답이 일정 수준 이상의 수학교육적 타당성을 보여 수학교육의 다양한 측면에서 효과적으로 활용할 수 있을 것이다.
개개인의 특성을 고려하지 않는 획일화된 교육의 문제점의 대안으로 학습자 맞춤 교육이 중요시 되고 있다. 현재 교육용 게임은 학습자 개개인의 능력에 따른 맞춤교육을 제공할 뿐 특성에 따라 다른 학습 방식을 제공하는 맞춤교육은 이루어지고 있지 않다. 따라서 본 논문에서는 학습자 성별의 특성 차이에 따른 교육용 게임의 구현 방안을 제안하였다.
현재 웹 상에서 이루어지는 교육은 개별 학습자의 학습 기대 수준에 따라 주문형(customization)과 맞춤형(personalization)교육이 요구되고 있으나 대부분 웹을 통한 교육이 획일적 커리큘럼에 따라 진행되고, 동일한 형태의 피드백을 제공하고 있어 학습자 개개인의 수준에 맞는 컨텐츠의 제공과 적절한 피드백이 이루어지지 못하고 있다. 따라서 학습 효과를 높이기 위해서는 학습자 수준에 맞는 차별화된 컨텐츠를 구성하여 제공하여야 한다. 본 연구에서는 수준별 학습, 맞춤형 교육 서비스를 제공하기 위한 컨텐츠 구성방법에 관하여 논의한다. 양질의 맞춤형 컨텐츠를 구성하기 위해 컨텐츠를 영역별로 분류하여 모듈화하고, 맞춤형 컨텐츠를 효율적으로 관리하여 학습자의 지식영역별 습득정도를 파악하고, 학습자의 수준에 맞게 융통성이 있으며 동적으로 컨텐츠를 재구성함으로써 학습자에게 가장 적절한 컨텐츠를 추출하여, 반복 학습을 통한 교육의 질적 제고를 기대한다.
수학은 계통성이 강한 학문으로 이전 단계에서의 학습 결손이 다음 학습에 큰 영향을 주기 때문에 학생들의 학습이 잘 이루어졌는지 수시로 확인하고, 즉각적으로 피드백을 제공해 주는 것이 필요하며, 이를 위해 수학교육에서 인공지능 교육시스템(ITS)을 활용할 수 있다. 이에 본 연구에서는 개인 맞춤형 수학 학습을 실행하기 위해 적용될 수 있는 인공지능 교육시스템의 기능이 무엇인지 살펴보고, 이를 실제로 적용해 본 결과를 분석하여 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습의 효과성을 구체적으로 살펴보는 것을 목적으로 하였다. 이를 위해 개인 맞춤형 학습과 수학교육에서 인공지능이 활용된 선행연구 내용을 분석하여 개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능을 추출하고, 이것을 반영한 학습 및 수업을 설계하여 초등학교 5학년 학생들에게 약 3개월 간 적용해 본 결과를 분석하였다. 그 결과, 개인 맞춤형 수학 학습을 위해 활용될 수 있는 인공지능 교육시스템의 기능은 크게 진단 및 평가, 분석 및 예측, 피드백 및 콘텐츠 제공으로 나눌 수 있었다. 또한 이러한 기능을 반영한 학습 설계를 초등학생들에게 적용한 결과, 개인 맞춤형 수학 학습에 인공지능 교육시스템이 어떻게 효과적으로 활용될 수 있는지에 대한 시사점을 얻었다. 그리고 앞으로 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습이 더욱 효과적으로 이루어질 수 있기 위해 더 정교한 기술과 자료 개발이 필요하다는 점을 제언하였다.
학습이 진행될 때 주어지는 학습자 맞춤형 피드백은 학습자의 성취도를 높이는 부분에서 중요한 요소 중 하나이다. 많은 연구가 맞춤형 피드백에 관련되어 진행되었지만, 각 연구 결과는 특정 도메인과 시스템에만 적합하도록 연구되었다. 따라서, 본 논문에서는 프로그래밍 교육을 위한 데이터 기반의 학습자 맞춤형 문제 제공 및 피드백 방법을 연구하고 지능형 코딩 학습 시스템 Everycoding에 적용하였다.
최근 IT 시장에서는 빅 데이터가 새로운 패러다임으로 주목받으면서 모든 분야에서 빅 데이터를 활용하기 위해 많은 노력을 기울이고 있다. 빅 데이터를 활용한 스마트교육에서는 학생들의 모든 학습활동 자료가 쉽게 수집될 수 있을 뿐만 아니라 모든 학생의 자료 또한 수집이 가능하다. 빅 데이터를 통한 학습자 맞춤형 교육은 현재 진행되는 스마트 교육의 진정한 효과로써 나타날 수 있을 것으로 여겨진다. 따라서 본 논문에서는 학습자의 학업 성취도 향상의 요인인 학습 내용에 대한 관심과 흥미를 기준으로 분석한 빅 데이터를 활용하는 개인 맞춤형 교육 시스템을 설계하였다.
컴퓨터 기술과 인공지능의 비약적인 발전이 국내 소프트웨어 교육에서도 많은 영향을 끼치고 있다. 이에 따라 2022 개정 교육과정에서도 맞춤형 교육을 요구하게 되었지만, 학교에서 맞춤형 교육을 실현하기에는 어려움이 있다. 이에 본 연구에서는 맞춤형 교육 실현을 위해 초보 학습자가 제출한 오답 코드와 오답 정보들을 활용하여 적절한 피드백 생성을 위한 프롬프트를 구성하였다. 그리고 생성형 인공지능 모델과 프롬프트 조합에 따른 정상 피드백 생성 빈도의 차이를 실제 데이터를 활용하여 분석하였다. 그 결과, 생성형 인공지능 모델 자체의 우수성보다 오답 정보를 포함한 프롬프트가 더 우수한 피드백 생성 성능을 나타내는 것을 확인하였다. 본 연구를 통해 국내 프로그래밍 교육에서 맞춤형 교육의 실현을 위한 토대가 되기를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.