• Title/Summary/Keyword: 망형상 제어

Search Result 22, Processing Time 0.032 seconds

A Development of NURBS-Based Pre and Post Processor for Structural Analysis of Free-Shaped Beam (자유형상 보요소 해석을 위한 NURBS기반의 전·후처리 모듈 개발)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6673-6678
    • /
    • 2015
  • Recently, the free form buildings are constructed frequently. Exterior and interior components of these buildings have the free cross-section and a curved shape. So, There are many usages of classical finite element having tapered section and free-style shape. Some general commercial applications like ETABS, SAP2000, MIDAS are usually used for the safety evaluation of the free form structures. However, there are some limits in the accuracy of structural analysis and the length of analysis time because a very complicated finite element mesh have to be used. Therefore, In this study, a pre and post program module was developed to take advantage of general 3-D curved beam element which has a free-style curved shape and mathematical backgrounds. Pre-post processing module has been developed in this study was developed to control the curvature of the curved members by the NURBS control points. As a result, fast geometric modeling than was possible commercial applications. In addition, realistic depiction of the shape and behavior patterns were possible because of the free-form building allows visual check of the free form.

Exploiting Spatial Reuse Opportunity with Power Control in loco parentis Tree Topology of Low-power and Wide-area Networks (대부모 트리 구조의 저 전력 광역 네트워크를 위한 전력 제어 기반의 공간 재사용 기회 향상 기법)

  • Byeon, Seunggyu;Kim, Jong Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • LoRa is a physical layer technology designed to secure highly reliable long-range communication with introducing loco parentis tree network and chirp spreading spectrum. Since since a leaf can send message to more than one parents simultaneously with a single transmission in a region, packet delivery ratio increases logarithmically as the number of gateways increases. The delivery ratio, however, dramatically collapses even under loco parentis tree topology due to the limitations of ALOHA-like primitive MAC, . The proposed method is intended to exploit SDMA approach to reuse frequency in an area. With the view, TxPower of each sender for each message in a concurrent transmission is elaborately controlled to survive the collision at different gateway. Thus, the gain from the capture effect improves the capacity of resource-hungry Low Power and Wide Area Networks.

Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System (하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1379-1386
    • /
    • 2005
  • For efficient welding it is necessary to maintain stability of the welding process and control the shape of the welding bead. The welding quality can be controlled by monitoring important parameters, such as, the Arc Voltage, Welding Current and Welding Speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using fuzzy logic and neural networks for improving welding qualify and maintaining the desired weld bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and remove the welding detects.

하이브리드 SEM 시스템

  • Kim, Yong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.109-110
    • /
    • 2014
  • 주사전자현미경(Scanning Electron Microscopy: SEM)은 고체상태에서 미세조직과 형상을 관찰하는 데에 가장 다양하게 쓰이는 분석기기로서 최근에 판매되고 있는 고분해능 SEM은 수 나노미터의 분해능을 가지고 있다. 그리고 SEM의 초점심도가 크기 때문에 3차원적인 영상의 관찰이 용이해서 곡면 혹은 울퉁불퉁한 표면의 영상을 육안으로 관찰하는 것처럼 보여준다. 활용도도 매우 다양해서 금속파면, 광물과 화석, 반도체 소자와 회로망의 품질검사, 고분자 및 유기물, 생체시료 nnnnnnnnn와 유가공 제품 등 모든 산업영역에 걸쳐 있다(Fig. 1). 입사된 전자빔이 시료의 원자와 탄성, 비탄성 충돌을 할 때 2차 전자(secondary electron)외에 후방산란전자(back scattered electron), X선, 음극형광 등이 발생하게 되는 이것을 통하여 topography (시료의 표면 형상), morphology(시료의 구성입자의 형상), composition(시료의 구성원소), crystallography (시료의 원자배열상태)등의 정보를 얻을 수 있다. SEM은 2차 전자를 이용하여 시료의 표면형상을 측정하고 그 외에는 SEM을 플랫폼으로 하여 EDS (Energy Dispersive X-ray Spectroscopy), WDS (Wave Dispersive X-ray Spectroscope), EPMA (Electron Probe X-ray Micro Analyzer), FIB (Focus Ion Beam), EBIC (Electron Beam Induced Current), EBSD (Electron Backscatter Diffraction), PBMS (Particle Beam Mass Spectrometer) 등의 많은 분석장치들이 SEM에 부가적으로 장착되어 다양한 시료의 측정이 이루어진다. 이 중 결정구조, 조성분석을 쉽고 효과적으로 할 수 있게 하는 X선 분석장치인 EDS를 SEM에 일체화시킨 장비와 EDS 및 PBMS를 SEM에 장착하여 반도체 공정 중 발생하는 나노입자의 형상, 성분, 크기분포를 측정하는 PCDS(Particle Characteristic Diagnosis System)에 대해 소개하고자 한다. - EDS와 통합된 SEM 시스템 기본적으로 SEM과 EDS는 상호보완적인 기능을 통하여 매우 밀접하게 사용되고 있으나 제조사와 기술적 근간의 차이로 인해 전혀 다른 방식으로 운영되고 있다. 일반적으로 SEM과 EDS는 별개의 시스템으로 스캔회로와 이미지 프로세싱 회로가 개별적으로 구현되어 있지만 로렌츠힘에 의해 발생하는 전자빔의 왜곡을 보정을 위해 EDS 시스템은 SEM 시스템과 연동되어 운영될 수 밖에 없다. 따라서, 각각의 시스템에서는 필요하지만 전체 시스템에서 보면 중복된 기능을 가지는 전자회로들이 존재하게 되고 이로 인해 SEM과 EDS에서 보는 시료의 이미지의 차이로 인한 측정오차가 발생한다(Fig. 2). EDS와 통합된 SEM 시스템은 중복된 기능인 스캔을 담당하는 scanning generation circuit과 이미지 프로세싱을 담당하는 FPGA circuit 및 응용프로그램을 SEM의 회로와 프로그램을 사용하게 함으로 SEM과 EDS가 보는 시료의 이미지가 정확히 일치함으로 이미지 캘리브레이션이 필요없고 측정오차가 제거된 EDS 측정이 가능하다. - PCDS 공정 중 발생하는 입자는 반도체 생산 수율에 가장 큰 영향을 끼치는 원인으로 파악되고 있으며, 생산수율을 저하시키는 원인 중 70% 가량이 이와 관련된 것으로 알려져 있다. 현재 반도체 공정 중이나 반도체 공정 장비에서 발생하는 입자는 제어가 되고 있지 않은 실정이며 대부분의 반도체 공정은 저압환경에서 이루어지기에 이 때 발생하는 입자를 제어하기 위해서는 저압환경에서 측정할 수 있는 측정시스템이 필요하다. 최근 국내에서는 CVD (Chemical Vapor Deposition) 시스템 내 파이프내벽에서의 오염입자 침착은 심각한 문제점으로 인식되고 있다(Fig. 3). PCDS (Particle Characteristic Diagnosis System)는 오염입자의 형상을 측정할 수 있는 SEM, 오염입자의 성분을 측정할 수 있는 EDS, 저압환경에서 기체에 포함된 입자를 빔 형태로 집속, 가속, 포화상태에 이르게 대전시켜 오염입자의 크기분포를 측정할 수 있는 PBMS가 일체화 되어 반도체 공정 중 발생하는 나노입자 대해 실시간으로 대처와 조치가 가능하게 한다.

  • PDF

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

Performance Analysis of the IEEE 802.11 Broadcast Scheme in a Wireless Data Network (무선 데이터 망에서 IEEE 802.11 브로드캐스트 기법의 성능 분석)

  • Park, Jae-Sung;Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.56-63
    • /
    • 2009
  • The IEEE 802.11 standard has been used for wireless data networks such as wireless LAN, ad-hoc network, and vehicular ad-hoc network. Thus, the performance analysis of the IEEE 802.11 specification has been one of the hottest issues for network optimization and resource management. Most of the analysis studies were performed in a data plane of the IEEE 802.11 unicast. However, IEEE 802.11 broadcast is widely used for topology management, path management, and data dissemination. Thus, it is important to understand the performance of the broadcast scheme for the design of efficient wireless data network. In this contort, we analyze the IEEE 802.11 broadcast scheme in terms of the broadcast frame reception probability according to the distance from a sending node. Unlike the other works, our analysis framework includes not only the system parameters of the IEEE 802.11 specification such as transmission range, data rate, minimum contention window but also the networking environments such as the number of nodes, network load, and the radio propagation environments. Therefore, our analysis framework is expected to be used for the development of protocols and algorithms in a dynamic wireless data network.

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.

A Study on the Intelligent 3D Foot Scanning System (인공지능형 삼차원 Foot Scanning 시스템에 관한 연구)

  • Kim, Young-Tak;Park, Ju-Won;Tack, Han-Ho;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.871-877
    • /
    • 2004
  • In this paper, for manufacturing a custom-made shoes, shape of foot acquired three-dimensional measurement device which makes shoe-last data for needing a custom-made shoes is founded on artificial intelligence technique and it shows method restoring to the original shape in optimized state. the developed system for this study is based on PC which uses existing three dimensional measurement method. And it gains shoe-last and data of foot shape going through 8 CCD(Charge Coupled Device) Which equipped top and bottom, right and left sides and 4 lasers which also equipped both sides and upper and lower sides. The acquired data are processed image processing algorithm using artificial intelligence technique. And result of data management is better quality of removing noise than other system not using artificial intelligence technique and it can simplify post-processing. So, this paper is constituted hardware and software system and it used neural network for determining threshold value, when input image on pre-processing step is being stage of image binarization and present that results.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

Study on the Implementation of SBOM(Software Bill Of Materials) in Operational Nuclear Facilities (가동 중 원자력시설의 SBOM(Software Bill Of Materials)구현방안 연구)

  • Do-yeon Kim;Seong-su Yoon;Ieck-chae Euom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.229-244
    • /
    • 2024
  • Recently, supply chain attacks against nuclear facilities such as "Evil PLC" are increasing due to the application of digital technology in nuclear power plants such as the APR1400 reactor. Nuclear supply chain security requires a asset management system that can systematically manage a large number of providers due to the nature of the industry. However, due to the nature of the control system, there is a problem of inconsistent management of attribute information due to the long lifecycle of software assets. In addition, due to the availability of the operational technology, the introduction of automated configuration management is insufficient, and limitations such as input errors exist. This study proposes a systematic asset management system using SBOM(Software Bill Of Materials) and an improvement for input errors using natural language processing techniques.